90 research outputs found

    The reproduction of gender differences in early career choices and professional identity of young dentist in Finland

    Get PDF
    Introduction For over the last 20 years, approximately 70% of working dentists in Finland have been women. However, there is internal division of the profession along gender lines. Female dentists work more often in the public sector and male dentists in the private sector. The aim of this study was to investigate the gender differences in young dentists' early career choices, specialization plans, values and perceptions of professional identity. Materials and methods The data were taken from a national e-mail questionnaire study called "Young Dentist," which was sent to 458 dentists who had received their licence to practise dentistry in 2014-2016 from all four universities with dental curricula in Finland. A total of 52% young dentists (n = 238) answered the questionnaire. Results and discussion The results indicated that whereas female dentists were more likely to perceive themselves as comforters, social workers and health promoters, male dentists tended to perceive themselves as technicians. These professional identities were interrelated with early-stage career choices in which female dentists worked more often in the public than in the private sector when compared to male dentists. There were also clear gender differences in the importance of values and the specialization plans of the young dentists. Conclusion Young dentists in Finland make career choices and develop professional identity in accordance with the attributes traditionally associated with cultural ideals related to femininity and masculinity.Peer reviewe

    APOE Îľ4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly

    Get PDF
    BACKGROUND: Neuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (Aβ) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE ε4 allele, the strongest genetic risk for sporadic AD. METHODS: Sixty 60-75-year-old APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent 11C-PK11195 PET (targeting 18-kDa translocator protein, TSPO), 11C-PiB PET (targeting Aβ), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). 11C-PK11195 distribution volume ratios and 11C-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early Aβ accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma Aβ1-42/1.40. RESULTS: In our cognitively unimpaired sample, cortical 11C-PiB-binding increased according to APOE ε4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite 11C-PK11195-binding did not differ between the APOE ε4 gene doses (P = 0.27) or between Aβ-positive and Aβ-negative individuals (P = 0.81) and associated with higher Aβ burden only in APOE ε4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical 11C-PiB (Rho = 0.35, P = 0.040), but not 11C-PK11195-binding (Rho = 0.13, P = 0.47) in Aβ-positive individuals. In the total cognitively unimpaired population, both higher composite 11C-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated 11C-PiB-binding was associated with lower APCC scores. CONCLUSIONS: Only Aβ burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE ε4 gene dose. However, APOE ε4 gene dose seemed to modulate the association between neuroinflammation and Aβ

    Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth

    Get PDF
    We report on the development and evaluation of a prototype tool aimed to assist laymen/patients in understanding the content of clinical narratives. The tool relies largely on unsupervised machine learning applied to two large corpora of unlabeled text – a clinical corpus and a general domain corpus. A joint semantic word-space model is created for the purpose of extracting easier to understand alternatives for words considered difficult to understand by laymen. Two domain experts evaluate the tool and inter-rater agreement is calculated. When having the tool suggest ten alternatives to each difficult word, it suggests acceptable lay words for 55.51% of them. This and future manual evaluation will serve to further improve performance, where also supervised machine learning will be used.</p

    ASIC-E4: Interplay of Beta-Amyloid, Synaptic Density and Neuroinflammation in Cognitively Normal Volunteers With Three Levels of Genetic Risk for Late-Onset Alzheimer's Disease – Study Protocol and Baseline Characteristics

    Get PDF
    Background: Detailed characterization of early pathophysiological changes in preclinical Alzheimer's disease (AD) is necessary to enable development of correctly targeted and timed disease-modifying treatments. ASIC-E4 study (“Beta-Amyloid, Synaptic loss, Inflammation and Cognition in healthy APOE ε4 carriers”) combines state-of-the-art neuroimaging and fluid-based biomarker measurements to study the early interplay of three key pathological features of AD, i.e., beta-amyloid (Aβ) deposition, neuroinflammation and synaptic dysfunction and loss in cognitively normal volunteers with three different levels of genetic (APOE-related) risk for late-onset AD. Objective: Here, our objective is to describe the study design, used protocols and baseline demographics of the ASIC-E4 study. Methods/Design: ASIC-E4 is a prospective observational multimodal imaging study performed in Turku PET Centre in collaboration with University of Gothenburg. Cognitively normal 60–75-year-old-individuals with known APOE ε4/ε4 genotype were recruited via local Auria Biobank (Turku, Finland). Recruitment of the project has been completed in July 2020 and 63 individuals were enrolled to three study groups (Group 1: APOE ε4/ε4, N = 19; Group 2: APOE ε4/ε3, N = 22; Group 3: APOE ε3/ε3, N = 22). At baseline, all participants will undergo positron emission tomography imaging with tracers targeted against Aβ deposition (11C-PIB), activated glia (11C-PK11195) and synaptic vesicle glycoprotein 2A (11C-UCB-J), two brain magnetic resonance imaging scans, and extensive cognitive testing. In addition, blood samples are collected for various laboratory measurements and blood biomarker analysis and cerebrospinal fluid samples are collected from a subset of participants based on additional voluntary informed consent. To evaluate the predictive value of the early neuroimaging findings, neuropsychological evaluation and blood biomarker measurements will be repeated after a 4-year follow-up period. Discussion: Results of the ASIC-E4 project will bridge the gap related to limited knowledge of the synaptic and inflammatory changes and their association with each other and Aβ in “at-risk” individuals. Thorough in vivo characterization of the biomarker profiles in this population will produce valuable information for diagnostic purposes and future drug development, where the field has already started to look beyond Aβ

    Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges

    Get PDF
    The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology

    Electrophysiological characteristics of permanent atrial fibrillation: insights from research models of cardiac remodeling

    Full text link
    [EN] Atrial fibrillation (AF) results in a remodeling of the electrical and structural characteristics of the cardiac tissue which dramatically reduces the efficacy of pharmacological and catheter-based ablation therapies. Recent experimental and clinical results have demonstrated that the complexity of the fibrillatory process significantly differs in paroxysmal versus persistent AF; however, the lack of appropriate research models of remodeled atrial tissue precludes the elucidation of the underlying AF mechanisms and the identification of appropriated therapeutic targets. Here, we summarize the different research models used to date, highlighting the lessons learned from them and pointing to the new doors that should be open for the development of innovative treatments for AF.The authors were supported by grants from the Spanish Ministry of Science and Innovation (PLE2009-0152), the Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain: PI13-01882 and PI13-00903) the Red de Investigacion Cardiovacular (RIC) from Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain). F Atienza served on the advisory board of Medtronic and has received research funding from St. Jude Medical Spain. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Climent, A.; Guillem SĂĄnchez, MS.; Atienza FernĂĄndez, F.; Fernandez-Aviles, F. (2014). Electrophysiological characteristics of permanent atrial fibrillation: insights from research models of cardiac remodeling. Expert Review of Cardiovascular Therapy. 13(1):1-3. https://doi.org/10.1586/14779072.2015.986465S1313

    PerhelähtÜinen ravintointerventio lastenneuvoloissa - Elintapainterventio Naperoille (ETANA) -esitutkimus

    Get PDF
    ETANA-tutkimuksessa suunniteltiin ja esitestattiin ravintointerventio, jonka tavoitteena on edistää lapsiperheiden hyviä elintapoja ja tukea ravitsemussuositusten saavuttamista. Intervention toteutusta ja vaikuttavuutta tutkittiin Espoon lastenneuvoloissa toteutetulla Elintapainterventio Naperoille (ETANA) -esitutkimuksella. Tutkimukseen osallistui lapsia, jotka kävivät kahdeksan kuukauden, yhden vuoden ja puolentoista vuoden ikäisten lasten määräaikaisissa terveystarkastuksissa. Tehostettu ravitsemusohjaus kannusti vanhempia lisäämään kasvisten, kalan ja kasviÜljyn käyttÜä. Tulosten perusteella lastenneuvolan terveysneuvonnan keskeisiä kehittämishaasteita ovat elintapaohjauksen toteuttaminen yksilÜllisesti kunkin perheen tarpeiden mukaan, perheen motivointi tarvittavaan muutokseen ja muutoksen saavuttamiseksi tarvittavien keinojen tunnistaminen sekä tavoitteiden saavuttamisen seuranta. Tässä raportissa esiteltävä tutkimus tuottaa näyttÜÜn perustuvaa tietoa terveyden edistämisen tyÜkaluista tutkijoille, asiantuntijoille, päätÜksentekijÜille sekä terveydenhuoltohenkilÜstÜlle

    Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study

    Get PDF
    Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely

    Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study

    Get PDF
    Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes

    Modeling CICR in rat ventricular myocytes: voltage clamp studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect <it>Ca</it><sup>2+ </sup>loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR <it>Ca</it><sup>2+ </sup>release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic <it>Ca</it><sup>2+ </sup>concentration ([<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>).</p> <p>Methods</p> <p>The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed <it>Ca</it><sup>2+ </sup>channels (trigger-channel and release-channel). It releases <it>Ca</it><sup>2+ </sup>flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>.</p> <p>Results</p> <p>Our model reproduces measured VC data published by several laboratories, and generates graded <it>Ca</it><sup>2+ </sup>release at high <it>Ca</it><sup>2+ </sup>gain in a homeostatically-controlled environment where [<it>Ca</it><sup>2+</sup>]<it><sub>myo </sub></it>is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR <it>Ca</it><sup>2+ </sup>release, its activation by trigger <it>Ca</it><sup>2+</sup>, and its refractory characteristics mediated by the luminal SR <it>Ca</it><sup>2+ </sup>sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence <it>Ca</it><sup>2+ </sup>homeostasis.</p> <p>Conclusions</p> <p>We examine the role of the above <it>Ca</it><sup>2+ </sup>regulating mechanisms in handling various types of induced disturbances in <it>Ca</it><sup>2+ </sup>levels by quantifying cellular <it>Ca</it><sup>2+ </sup>balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses.</p
    • …
    corecore