1,240 research outputs found

    Effects of Row Spacings and Varieties on Grain Yield and Economics of Maize

    Full text link
    Maize is the second most important crop of Nepal. The yield of the crop is low due to lack of appropriate plant density for the varieties. The field experiment was carried out to study the effect of different row spacings on different maize varieties at Deupur, Lamahi municipality of the dang district in province No. 5, Nepal during the rainy season from June to September, 2018. Four levels of spacings (boardcasting and three row spacings of 45, 60 and 75 cm) and two maize varieties (Rampur Composite and Arun-2) were evaluated using randomized complete block design with three replications. The highest grain yield was found in Rampur Composite and Arun-2 while they were planted with row spacing of 60 cm with plant to plant spacing of 25 cm. The highest grain yield, cob length, cob circumference, number of rows per cob, thousand grain weight  were reported when maize was planted in the  row spacing 60×25cm. Among the maize varieties, Rampur Composite produced the highest grain yield, cob length, cob circumference, number of rows per cob as compared to Arun-2. This study suggested that maize production can be maximized by cultivating maize varieties with row spacing of 60 cm with plant to plant spacing of 25 cm

    Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in Bi2_2Se3_3 with high charge-carrier density

    Get PDF
    Topological insulators are ideally represented as having an insulating bulk with topologically protected, spin-textured surface states. However, it is increasingly becoming clear that these surface transport channels can be accompanied by a finite conducting bulk, as well as additional topologically trivial surface states. To investigate these parallel conduction transport channels, we studied Shubnikov-de Haas oscillations in Bi2_2Se3_3 thin films, in high magnetic fields up to 30 T so as to access channels with a lower mobility. We identify a clear Zeeman-split bulk contribution to the oscillations from a comparison between the charge-carrier densities extracted from the magnetoresistance and the oscillations. Furthermore, our analyses indicate the presence of a two-dimensional state and signatures of additional states the origin of which cannot be conclusively determined. Our findings underpin the necessity of theoretical studies on the origin of and the interplay between these parallel conduction channels for a careful analysis of the material's performance.Comment: Manuscript including supplemental materia

    Quantitative recovery of viable Lactobacillus paracasei CNCM I-1572 (L. casei DG®) after gastrointestinal passage in healthy adults

    Get PDF
    Probiotics are live microorganisms, and viability after transit through the gastrointestinal tract (GIT) is considered an inherent property of the health benefits of probiotics. The aim of the present study was to quantify the viable and total loads of Lactobacillus paracasei DG cells after passage through the GIT following the consumption of the probiotic product Enterolactis (L. casei DG\uae; L. paracasei CNCM I-1572; L. paracasei DG) from drinkable vials by healthy adults. We developed a novel method for discriminating and enumerating culturable L. paracasei DG cells based on the unique sticky, filamentous phenotype of this strain on MRS agar containing vancomycin and kanamycin. The identity of DG was also confirmed with strain-specific primers by colony PCR. This method was used for a recovery study of the DG strain to quantify viable cells in the fecal samples of 20 volunteers during a 1-week probiotic consumption period and a 1-week follow-up. We isolated L. paracasei DG from at least one fecal sample from all the volunteers. The highest concentration of viable DG cells [ranging from 3.6 to 6.7 log10colony-forming unit (CFU) per gram of feces] in the feces was observed between 4 and 8 days from the beginning of Enterolactis intake and for up to 5 days after cessation of intake. As expected, the total DG count determined by real-time quantitative PCR (qPCR) was mostly higher than the viable DG cells recovered. Viable count experiments, carried out by combining ad hoc culture-based discriminative conditions and strain-specific molecular biological protocols, unambiguously demonstrated that L. paracasei DG can survive gastrointestinal transit in healthy adults when ingested as Enterolactis in drinkable vials containing no less than one billion CFU at the end of shelf life

    Probabilistic Methods of Quantitative Risk Analysis: A Case Study with Bayesian Networks and Petri Nets Approach

    Get PDF
    PresentationConventional risk assessment methods such as Bow Ties have been incapable of capturing the dynamic nature of a system and hence have failed to properly predict the time dependent failure of barriers. Modifications made to incorporate time dependencies in such methods have not found wide application yet. Rapidly changing physical parameters necessitate techniques capable of considering the dynamic aspects of a system throughout its lifetime. The present work is aimed at demonstrating the applicability of Bayesian Networks and Petri Nets to capture the time dependencies of systems to carry out a quantitative risk analysis. A case study is to be carried out using both Bayesian Network and Petri Nets to provide an insight into the pros and cons of using each method to model the system. This insight is to provide a starting point for the development of a model that will enable us to conduct a quantitative risk analysis considering all factors that can lead to an incident

    Sodium stibogluconate cardiotoxicity and safety of generics

    Get PDF
    Between April 9 and May 5 2000, an outbreak of fatal cardiotoxicity occurred in Nepal amongst visceralleishmaniasis patients treated with a recently introduced batch of generic sodium stibogluconate (SSG) from GL Pharmaceuticals, Calcutta, India. Eight (36%) of 23 patients treated with this batch died, and in 5 (23%) death was attributed to the cardiotoxicity of the drug. This contrasts with the low total death rate (3.2%) and death rate due to cardiotoxicity (0.8%) observed among 252 patients treated between August 1999 and December 2001 with generic SSG from Albert David Ltd, Calcutta, India. These data show that every batch of generic SSG should be subject to rigorous quality control prior to us

    Impact of a multistrain probiotic formulation with high bifidobacterial content on the fecal bacterial community and short-chain fatty acid levels of healthy adults

    Get PDF
    The consumption of probiotic products is continually increasing, supported by growing scientific evidence of their efficacy. Considering that probiotics may primarily affect health (either positively or negatively) through gut microbiota modulation, the first aspect that should be evaluated is their impact on the intestinal microbial ecosystem. In this study, we longitudinally analyzed the bacterial taxonomic composition and organic acid levels in four fecal samples collected over the course of four weeks from 19 healthy adults who ingested one capsule a day for two weeks of a formulation containing at least 70 billion colony-forming units, consisting of 25% lactobacilli and 75% Bifidobacterium animalis subsp. lactis. We found that 16S rRNA gene profiling showed that probiotic intake only induced an increase in a single operational taxonomic unit ascribed to B. animalis, plausibly corresponding to the ingested bifidobacterial strain. Furthermore, liquid chromatography/mass spectrometry revealed a significant increase in the lactate and acetate/butyrate ratio and a trend toward a decrease in succinate following probiotic administration. The presented results indicate that the investigated probiotic formulation did not alter the intestinal bacterial ecosystem of healthy adults and suggest its potential ability to promote colonization resistance in the gut through a transient increase in fecal bifidobacteria, lactic acid, and the acetate/butyrate ratio

    The importance of vegetation in understanding terrestrial water storage variations

    Get PDF
    Funding Information: The article processing charges for this openaccess publication were covered by the Max Planck Society. Publisher Copyright: © 2022 Tina Trautmann et al.So far, various studies have aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way that vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon, and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth-observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake, and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including varying vegetation characteristics on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment in which vegetation parameters vary in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but explicitly including varying vegetation data leads to even better performance and more physically plausible parameter values. The largest improvements regarding TWS and ET are seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of different soil water storage components to the TWS variations. This suggests an important role of the representation of vegetation in hydrological models for interpreting TWS variations. Our simulations further indicate a major effect of deeper moisture storages and groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.publishersversionpublishe
    corecore