11 research outputs found

    The SUMO2/3 specific E3 ligase ZNF451-1 regulates PML stability

    No full text
    The small ubiquitin related modifier SUMO regulates protein functions to maintain cell homeostasis. SUMO attachment is executed by the hierarchical action of E1, E2 and E3 enzymes of which E3 ligases ensure substrate specificity. We recently identified the ZNF451 family as novel class of SUMO2/3 specific E3 ligases and characterized their function in SUMO chain formation. The founding member, ZNF451isoform1 (ZNF451-1) partially resides in PML bodies, nuclear structures organized by the promyelocytic leukemia gene product PML. As PML and diverse PML components are well known SUMO substrates the question arises whether ZNF451-1 is involved in their sumoylation. Here, we show that ZNF451-1 indeed functions as SUMO2/3 specific E3 ligase for PML and selected PML components in vitro. Mutational analysis indicates that substrate sumoylation employs an identical biochemical mechanism as we described for SUMO chain formation. In vivo, ZNF451-1 RNAi depletion leads to PML stabilization and an increased number of PML bodies. By contrast, PML degradation upon arsenic trioxide treatment is not ZNF451-1 dependent. Our data suggest a regulatory role of ZNF451-1 in fine-tuning physiological PML levels in a RNF4 cooperative manner in the mouse neuroblastoma N2a cell-line

    Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae

    No full text
    Posttranslational modification with the small ubiquitin-related modifier SUMO depends on the sequential activities of E1, E2, and E3 enzymes. While regulation by E3 ligases and SUMO proteases is well understood, current knowledge of E2 regulation is very limited. Here, we describe modification of the budding yeast E2 enzyme Ubc9 by sumoylation (Ubc9*SUMO). Although less than 1% of Ubc9 is sumoylated at Lys153 at steady state, a sumoylation-deficient mutant showed significantly reduced meiotic SUMO conjugates and abrogates synaptonemal complex formation. Biochemical analysis revealed that Ubc9*SUMO is severely impaired in its classical activity but promoted SUMO chain assembly in the presence of Ubc9. Ubc9*SUMO cooperates with charged Ubc9 (Ubc9∼SUMO) by noncovalent backside SUMO binding and by positioning the donor SUMO for optimal transfer. Thus, sumoylation of Ubc9 converts an active enzyme into a cofactor and reveals a mechanism for E2 regulation that orchestrates catalytic (Ubc9∼SUMO) and noncatalytic (Ubc9*SUMO) functions of Ubc9

    Integrating quantitative proteomics with accurate genome profiling of transcription factors by greenCUT&RUN

    No full text
    Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method 'greenCUT&RUN' for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibility, whilst assuring specificity. Our strategy begins with tagging of the protein of interest with GFP and utilizes a GFP-specific nanobody fused to MNase to profile genome-wide binding events. By using a GFP-nanobody the greenCUT&RUN approach eliminates antibody dependency and variability. Robust genomic profiles were obtained with greenCUT&RUN, which are accurate and unbiased towards open chromatin. By integrating greenCUT&RUN with nanobody-based affinity purification mass spectrometry, 'piggy-back' DNA binding events can be identified on a genomic scale. The unique design of greenCUT&RUN grants target protein flexibility and yields high resolution footprints. In addition, greenCUT&RUN allows rapid profiling of mutants of chromatin and transcription proteins. In conclusion, greenCUT&RUN is a widely applicable and versatile genome-mapping technique

    Integrating quantitative proteomics with accurate genome profiling of transcription factors by greenCUT&RUN

    Get PDF
    Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method 'greenCUT&RUN' for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibility, whilst assuring specificity. Our strategy begins with tagging of the protein of interest with GFP and utilizes a GFP-specific nanobody fused to MNase to profile genome-wide binding events. By using a GFP-nanobody the greenCUT&RUN approach eliminates antibody dependency and variability. Robust genomic profiles were obtained with greenCUT&RUN, which are accurate and unbiased towards open chromatin. By integrating greenCUT&RUN with nanobody-based affinity purification mass spectrometry, 'piggy-back' DNA binding events can be identified on a genomic scale. The unique design of greenCUT&RUN grants target protein flexibility and yields high resolution footprints. In addition, greenCUT&RUN allows rapid profiling of mutants of chromatin and transcription proteins. In conclusion, greenCUT&RUN is a widely applicable and versatile genome-mapping technique

    Ubc9 Sumoylation Controls SUMO Chain Formation and Meiotic Synapsis in Saccharomyces cerevisiae

    No full text
    Posttranslational modification with the small ubiquitin-related modifier SUMO depends on the sequential activities of E1, E2, and E3 enzymes. While regulation by E3 ligases and SUMO proteases is well understood, current knowledge of E2 regulation is very limited. Here, we describe modification of the budding yeast E2 enzyme Ubc9 by sumoylation (Ubc9<sup>*</sup>SUMO). Although less than 1% of Ubc9 is sumoylated at Lys153 at steady state, a sumoylation-deficient mutant showed significantly reduced meiotic SUMO conjugates and abrogates synaptonemal complex formation. Biochemical analysis revealed that Ubc9<sup>*</sup>SUMO is severely impaired in its classical activity but promoted SUMO chain assembly in the presence of Ubc9. Ubc9<sup>*</sup>SUMO cooperates with charged Ubc9 (Ubc9~SUMO) by noncovalent backside SUMO binding and by positioning the donor SUMO for optimal transfer. Thus, sumoylation of Ubc9 converts an active enzyme into a cofactor and reveals a mechanism for E2 regulation that orchestrates catalytic (Ubc9~SUMO) and noncatalytic (Ubc9<sup>*</sup>SUMO) functions of Ubc9

    The Sialomucin CD34 Is a Marker of Lymphatic Endothelial Cells in Human Tumors

    No full text
    The mechanisms of lymphangiogenesis have been increasingly understood in recent years. Yet, the contribution of lymphangiogenesis versus lymphatic cooption in human tumors and the functionality of tumor lymphatics are still controversial. Furthermore, despite the identification of lymphatic endothelial cell (LEC) markers such as Prox1, podoplanin, LYVE-1, and VEGFR-3, no activation marker for tumor-associated LECs has been identified. Applying double-staining techniques with established LEC markers, we have screened endothelial cell differentiation antigens for their expression in LECs. These experiments identified the sialomucin CD34 as being exclusively expressed by LECs in human tumors but not in corresponding normal tissues. CD34 is expressed by LYVE-1(+)/podoplanin(+)/Prox1(+) tumor-associated LECs in colon, breast, lung, and skin tumors. More than 60% of analyzed tumors contained detectable intratumoral lymphatics. Of these, more than 80% showed complete co-localization of CD34 with LEC markers. In contrast, LECs in all analyzed normal organs did not express CD34. Corresponding analyses of experimental tumors revealed that mouse tumor-associated LECs do not express CD34. Taken together, these experiments identify CD34 as the first differentially expressed LEC antigen that is selectively expressed by tumor-associated LECs. The data warrant further exploration of CD34 in tumor-associated LECs as a prognostic tumor marker

    Control of Dpp morphogen signalling by a secreted feedback regulator

    No full text
    In many instances during development, morphogens specify cell fates by forming concentration gradients. In the Drosophila melanogaster wing imaginal disc, Decapentaplegic (Dpp), a bone morphogenetic protein (BMP), functions as a long-range morphogen to control patterning and growth. Dpp is secreted from a stripe of cells at the anterior-posterior compartment boundary and spreads into both compartments to generate a characteristic BMP activity gradient. Ever since the identification of the morphogen activity of Dpp in the developing wing, the system has served as a paradigm to understand how long-range gradients are established and how cells respond to such gradients. Here we reveal the tight and direct connection of these two processes with the identification and characterization of pentagone (pent), a transcriptional target of BMP signalling encoding a secreted regulator of the pathway. Absence of pent in the wing disc causes a severe contraction of the BMP activity gradient resulting in patterning and growth defects. We show that Pent interacts with the glypican Dally to control Dpp distribution and provide evidence that proper establishment of the BMP morphogen gradient requires the inbuilt feedback loop embodied by Pent

    A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly

    No full text
    SUMO chains act as stress-induced degradation tags or repair factor-recruiting signals at DNA lesions. Although El activating, E2 conjugating and E3 ligating enzymes efficiently assemble SUMO chains, specific chain-elongation mechanisms are unknown. E4 elongases are specialized E3 ligases that extend a chain but are inefficient in the initial conjugation of the modifier. We identified ZNF451, a representative member of a new class of SUMO2 and SUM03 (SUMO2/3)-specific enzymes that execute catalysis via a tandem SUMO-interaction motif (SIM) region. One SIM positions the donor SUMO while a second SIM binds SUMO on the back side of the E2 enzyme. This tandem-SIM region is sufficient to extend a back side-anchored SUMO chain (E4 elongase activity), whereas efficient chain initiation also requires a zinc-finger region to recruit the initial acceptor SUMO (E3 ligase activity). Finally, we describe four human proteins sharing E4 elongase activities and their function in stress-induced SUMO2/3 conjugation
    corecore