111 research outputs found

    The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease

    Get PDF
    The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio is an independent risk index for cardiovascular events. This study aimed to evaluate the association between TG/HDL-C ratio and coronary plaque characteristics as seen on coronary computed tomography angiography (CCTA) and the corresponding increase in the likelihood of cardiovascular events. A total of 935 patients who underwent CCTA for suspected coronary artery disease (CAD) were included. High-risk plaques (HRP) were defined based on three characteristics: positive remodeling, low-density plaques, and spotty calcification. Significant stenosis was defined as luminal narrowing of >70%. Patients with a higher TG/HDL-C ratio showed significantly greater prevalence of HRP and significant stenosis than patients with low TG/HDL-C ratios (p < 0.01). Multivariate logistic analysis demonstrated that the TG/HDL-C ratio was significantly associated with the presence of HRP (p < 0.01) but not with significant coronary stenosis (p = 0.24). During the median follow-up period of 4.1 years, 26 cardiovascular events including cardiovascular death and acute coronary syndrome occurred. The highest TG/HDL-C tertile was associated with cardiovascular events, with the lowest TG/HDL-C tertile as the reference (hazard ratio, 3.75; 95% confidence interval, 1.04-13.50). A high TG/HDL-C ratio is associated with the presence of CCTA-verified HRP, which can lead to cardiovascular events in patients with suspected CAD

    Negatively charged low-density lipoprotein is associated with atherogenic risk in hypertensive patients

    Get PDF
    Negatively charged low-density lipoprotein (LDL), generated via multiple processes such as oxidation, acetylation, or glycosylation, plays a key role in the initiation and progression of atherosclerosis and related diseases. Anion-exchange high-performance liquid chromatography (AE-HPLC) can subfractionate LDL into LDL-1, LDL-2, and LDL-3 based on LDL particle charge, but the clinical significance of LDL subfractions has not yet been elucidated. The aim of this study was to determine the clinical significance of these fractions with particular regard to atherogenic risk in hypertensive patients. Ninety-eight patients with essential hypertension (age 67.0 ± 10.7 years; 54 males) were enrolled in the present study. The relationships between LDL subfractions and atherogenic risk factors, including lipid profiles, blood pressure and plasma 8-isoprostane as a marker of oxidative stress, were examined. LDL-1 levels were significantly and negatively correlated with body mass index (r = -0.384, p < 0.001), systolic blood pressure (r = -0.457, p < 0.001), non-high-density lipoprotein cholesterol levels (r = -0.457, p < 0.001) and 8-isoprostane levels (r = -0.415, p < 0.001). LDL-3, which is the most negatively charged fraction of total LDL, was significantly and positively correlated with these parameters (r = 0.267, 0.481, 0.357, and 0.337, respectively). LDL-1 levels were significantly lower (p < 0.001), and LDL-2 and LDL-3 levels were significantly higher (each p < 0.001) in patients with poorly controlled hypertension than in patients with well-controlled hypertension. In addition, an increase in the total number of traditional risk factors at time of study participation, but not previous diagnosis, was associated with a decrease in LDL-1 levels and increases in LDL-2 and LDL-3 levels. These data suggest that LDL subfractions are associated with multiple atherogenic risk factors and that treatment to modify these risk factors could result in Negatively charged low-density lipoprotein (LDL), generated via multiple processes such as oxidation, acetylation, or glycosylation, plays a key role in the initiation and progression of atherosclerosis and related diseases. Anion-exchange high-performance liquid chromatography (AE-HPLC) can subfractionate LDL into LDL-1, LDL-2, and LDL-3 based on LDL particle charge, but the clinical significance of LDL subfractions has not yet been elucidated. The aim of this study was to determine the clinical significance of these fractions with particular regard to atherogenic risk in hypertensive patients. Ninety-eight patients with essential hypertension (age 67.0 ± 10.7 years; 54 males) were enrolled in the present study. The relationships between LDL subfractions and atherogenic risk factors, including lipid profiles, blood pressure and plasma 8-isoprostane as a marker of oxidative stress, were examined. LDL-1 levels were significantly and negatively correlated with body mass index (r = −0.384, p < 0.001), systolic blood pressure (r = −0.457, p < 0.001), non-high-density lipoprotein cholesterol levels (r = −0.457, p < 0.001) and 8-isoprostane levels (r = −0.415, p < 0.001). LDL-3, which is the most negatively charged fraction of total LDL, was significantly and positively correlated with these parameters (r = 0.267, 0.481, 0.357, and 0.337, respectively). LDL-1 levels were significantly lower (p < 0.001), and LDL-2 and LDL-3 levels were significantly higher (each p < 0.001) in patients with poorly controlled hypertension than in patients with well-controlled hypertension. In addition, an increase in the total number of traditional risk factors at time of study participation, but not previous diagnosis, was associated with a decrease in LDL-1 levels and increases in LDL-2 and LDL-3 levels. These data suggest that LDL subfractions are associated with multiple atherogenic risk factors and that treatment to modify these risk factors could result in changes in LDL subfraction levels. In conclusion, LDL subfractions isolated by AE-HPLC may represent a marker of atherogenic risk in patients with hypertension

    Culprit segments identified by optical coherence tomography in patients with acute myocardial infarction: Two case reports

    Get PDF
    The high resolution of optical coherence tomography (OCT) provides detailed information about coronary plaque morphology, which enables the mechanism of acute myocardial infarction to be evaluated. We describe two patients with acute myocardial infarction in whom culprit segments were identified by OCT, but not by either coronary angiography or intravascular ultrasound

    Impact of Gender on In-hospital Mortality in Patients with Acute Myocardial Infarction in Nagasaki

    Get PDF
    Acute myocardial infarction (AMI) is one of the leading causes of death in Japan. Immediate reperfusion therapy, includingcoronary intervention, improves patient prognosis. Despite this, females are said to be more prone to poor prognosis. A regional AMI registry in Nagasaki prefecture has been instituted recently that will evaluate whether female gender might predict short-term in-hospital death. Seventeen regional AMI centers enrolled all AMI patients from September 2014 through March 2016. A propensity score (PS) was derived using logistic regression to model the probability of females as a total function of the potential confounding covariates. Two types of PS techniques were used: PS matching and PS stratification. The consistency of in-hospital death was determined between PS matched patients of both genders. Based on PS, patients were ranked and stratified into five groups for the PS stratification. Out of 996 patients, 67 (6.7%) died during hospitalization: 31 (10.4%) out of 298 females and 36 (5.2%) out of 698 males (p < 0.0025). The proportion of cardiac and non-cardiac related death was almost same between genders (25 and 6 in female, 29 and 7 in male, respectively). Among 196 PS matched patients, there was a consistency between genders regarding in-hospital deaths (McNemar test, p = 0.6698). The 717 propensity scored patients had no significant differences between genders among propensity quintiles (Cochran-Mantel-Heanszel test, p = 0.7117). We found that gender alone is not an indicator of short-term in-hospital death in acute myocardial infarction patients

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP
    corecore