134 research outputs found

    Meltwater export of prokaryotic cells from the Greenland ice sheet

    Get PDF
    Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 104 cells mL−1 and we estimate that ∼1.02 × 1021 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world

    Global radiation in a rare biosphere soil diatom

    Get PDF
    Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms

    Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains

    Get PDF
    Glacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astonishing biodiversity spanning all domains of life. Here, we studied the spatial dynamics of prokaryotic and eukaryotic photoautotroph diversity within braided glacier-fed streams and tributaries draining lateral terraces predominantly fed by groundwater and snowmelt across three proglacial floodplains in the Swiss Alps. Along the lateral chronosequence, we found that benthic biofilms in tributaries develop higher biomass than those in glacier-fed streams, and that their respective diversity and community composition differed markedly. We also found spatial turnover of bacterial communities in the glacier-fed streams along the longitudinal chronosequence. These patterns along the two chronosequences seem unexpected given the close spatial proximity and connectivity of the various streams, suggesting environmental filtering as an underlying mechanism. Furthermore, our results suggest that photoautotrophic communities shape bacterial communities across the various streams, which is understandable given that algae are the major source of organic matter in proglacial streams. Overall, our findings shed new light on benthic biofilms in proglacial streams now changing at rapid pace owing to climate-induced glacier shrinkage

    Silicon isotopes in Arctic and sub-Arctic glacial meltwaters:The role of subglacial weathering in the silicon cycle

    Get PDF
    Glacial environments play an important role in high-latitude marine nutrient cycling, potentially contributing significant fluxes of silicon (Si) to the polar oceans, either as dissolved silicon (DSi) or as dissolvable amorphous silica (ASi). Silicon is a key nutrient in promoting marine primary productivity, contributingto atmosphericCO2 removal.We present the current understanding of Si cycling in glacial systems,focusingontheSiisotope(δ30Si)composition of glacial meltwaters. We combine existing glacial δ30Si data with new measurements from 20 subArctic glaciers, showing that glacial meltwaters consistently export isotopically light DSi compared with non-glacial rivers (+0.16‰ versus +1.38‰). Glacial δ30SiASi composition ranges from −0.05‰ to −0.86‰ but exhibits low seasonal variability. Silicon fluxes and δ30Si composition from glacial systems are not commonly included in global Si budgets and isotopic mass balance calculations at present. We discuss outstanding questions, including the formation mechanism of ASi and the export of glacial nutrients from fjords. Finally, we provide a contextual framework for the recent advances in our understanding of subglacial Si cycling and highlight critical research avenues for assessing potential future changes in these environments

    Cross-domain interactions confer stability to benthic biofilms in proglacial streams

    Get PDF
    Cross-domain interactions are an integral part of the success of biofilms in natural environments but remain poorly understood. Here, we describe cross-domain interactions in stream biofilms draining proglacial floodplains in the Swiss Alps. These streams, as a consequence of the retreat of glaciers, are characterised by multiple environmental gradients and perturbations (e.g., changes in channel geomorphology, discharge) that depend on the time since deglaciation. We evaluate co-occurrence of bacteria and eukaryotic communities along streams and show that key community members have disproportionate effects on the stability of community networks. The topology of the networks, here quantified as the arrangement of the constituent nodes formed by specific taxa, was independent of stream type and their apparent environmental stability. However, network stability against fragmentation was higher in the streams draining proglacial terrain that was more recently deglaciated. We find that bacteria, eukaryotic photoautotrophs, and fungi are central to the stability of these networks, which fragment upon the removal of both pro- and eukaryotic taxa. Key taxa are not always abundant, suggesting an underlying functional component to their contributions. Thus, we show that there is a key role played by individual taxa in determining microbial community stability of glacier-fed streams

    Environmental and Organismal Predictors of Intraspecific Variation in the Stoichiometry of a Neotropical Freshwater Fish

    Get PDF
    The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ∼3.2%(±0.6), average %N∼10.7%(±0.9), and average %C∼41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N∶P and benthic organic matter C∶N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N∶P, and C∶P, and life history phenotype was significantly correlated with %C, %P, C∶P and C∶N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory

    Catchment characteristics and seasonality control the composition of microbial assemblages exported from three outlet glaciers of the Greenland Ice Sheet

    Get PDF
    Glacial meltwater drains into proglacial rivers where it interacts with the surrounding landscape, collecting microbial cells as it travels downstream. Characterizing the composition of the resulting microbial assemblages in transport can inform us about intra-annual changes in meltwater flowpaths beneath the glacier as well as hydrological connectivity with proglacial areas. Here, we investigated how the structure of suspended microbial assemblages evolves over the course of a melt season for three proglacial catchments of the Greenland Ice Sheet (GrIS), reasoning that differences in glacier size and the proportion of glacierized versus non-glacierized catchment areas will influence both the identity and relative abundance of microbial taxa in transport. Streamwater samples were taken at the same time each day over a period of 3 weeks (summer 2018) to identify temporal patterns in microbial assemblages for three outlet glaciers of the GrIS, which differed in glacier size (smallest to largest; Russell, Leverett, and Isunnguata Sermia [IS]) and their glacierized: proglacial catchment area ratio (Leverett, 76; Isunnguata Sermia, 25; Russell, 2). DNA was extracted from samples, and 16S rRNA gene amplicons sequenced to characterize the structure of assemblages. We found that microbial diversity was significantly greater in Isunnguata Sermia and Russell Glacier rivers compared to Leverett Glacier, the latter of which having the smallest relative proglacial catchment area. Furthermore, the microbial diversity of the former two catchments continued to increase over monitored period, presumably due to increasing hydrologic connectivity with proglacial habitats. Meanwhile, diversity decreased over the monitored period in Leverett, which may have resulted from the evolution of an efficient subglacial drainage system. Linear discriminant analysis further revealed that bacteria characteristic to soils were disproportionately represented in the Isunnguata Sermia river, while putative methylotrophs were disproportionately abundant in Russell Glacier. Meanwhile, taxa typical for glacierized habitats (i.e., Rhodoferax and Polaromonas) dominated in the Leverett Glacier river. Our findings suggest that the proportion of deglaciated catchment area is more influential to suspended microbial assemblage structure than absolute glacier size, and improve our understanding of hydrological flowpaths, particulate entrainment, and transport

    The microbiome of cryospheric ecosystems.

    Get PDF
    peer reviewedThe melting of the cryosphere is among the most conspicuous consequences of climate change, with impacts on microbial life and related biogeochemistry. However, we are missing a systematic understanding of microbiome structure and function across cryospheric ecosystems. Here, we present a global inventory of the microbiome from snow, ice, permafrost soils, and both coastal and freshwater ecosystems under glacier influence. Combining phylogenetic and taxonomic approaches, we find that these cryospheric ecosystems, despite their particularities, share a microbiome with representatives across the bacterial tree of life and apparent signatures of early and constrained radiation. In addition, we use metagenomic analyses to define the genetic repertoire of cryospheric bacteria. Our work provides a reference resource for future studies on climate change microbiology
    corecore