95 research outputs found

    SENSING IMMOBILIZED MOLECULES OF STREPTAVIDIN ON A SILICON SURFACE BY MALDI-TOF MASS SPECTROMETRY AND FLUORESCENCE MICROSCOPY

    Get PDF
    Indexación: Web of Science; Scielo.A hydrogen-terminated Si (111) surface was modified to form an aminoterminated monolayer for immobilization of streptavidin. Cleavage of an N-(ω-undecylenyl)-phthalimide covered surface using hidrazine yields an amino group-modified surface, which serves as a substrate for the attachment of biotin and subsequently streptavidin. We used surface analytical techniques to characterize the surface and to control the course of functionalization before the immobilization of streptavidin. To confirm the presence of the streptavidin Texas red on the surface two powerful techniques available in a standard biochemical laboratory are used, Fluorescence Microscopy and MALDI-TOF that allow us to detect and determine the immobilized streptavidin. This work provides an avenue for the development of devices in which the exquisite binding specificity of biomolecular recognition is directly coupled to a biosensor. In addition, we have demonstrated that MALDI-TOF and fluorescence microscopy are useful techniques for the characterization of silicon functionalized surfaces.http://ref.scielo.org/gm87c

    A Materials Screening Test of Corrosion Monitoring in LiNO3 Containing Molten Salts as a Thermal Energy Storage Material for CSP Plants

    Get PDF
    Concentrated solar power (CSP) plants, in the context of thermal energy storage (TES) upgrades, need to provide a timely and effective response to the corrosion process that occurs due to the effect of high temperatures, where one of the main challenges is to control its effect, and thus the costs related to the materials used. Electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) were applied in this study as a corrosion monitoring technique. The electrochemical tests were carried out on the materials AISI304, AISI430, and HR-224 immersed in a mixture of ternary salt composed of 57 wt.% KNO3 + 13 wt.% NaNO3 + 30 wt.% LiNO3 at 550 °C during 100 h of exposure and subsequently compared with solar salt. The test was also carried out on the VM12 alloy in the ternary salt with lithium content at 100 and 1000 h of exposure at 550 °C. The corrosion tests show that the materials conform to a model of protective layer in which the same results were contrasted with the chemical corrosion mechanism of nitrate mixture. According to the results obtained in this research, electrochemical techniques could be an interesting option to control corrosion in CSP plants and reduce operational risks during operation.The authors would like to acknowledge the financial support provided by CONICYT/FONDAP 15110019 “Solar Energy Research Center” SERC-Chile and FONDEQUIP EQM170111

    Photothermally controlled methotrexate release system using β-cyclodextrin and gold nanoparticles

    Get PDF
    The inclusion compound (IC) of cyclodextrin (CD) containing the antitumor drug Methotrexate (MTX) as a guest molecule was obtained to increase the solubility of MTX and decrease its inherent toxic effects in nonspecific cells. The IC was conjugated with gold nanoparticles (AuNPs), obtained by a chemical method, creating a ternary intelligent delivery system for MTX molecules, based on the plasmonic properties of the AuNPs. Irradiation of the ternary system, with a laser wavelength tunable with the corresponding surface plasmon of AuNPs, causes local energy dissipation, producing the controlled release of the guest from CD cavities. Finally, cell viability was evaluated using MTS assays for β-CD/MTX and AuNPs + β-CD/MTX samples, with and without irradiation, against HeLa tumor cells. The irradiated sample of the ternary system AuNPs + β-CD/MTX produced a diminution in cell viability attributed to the photothermal release of MTX

    Functionalization of gold nanostars with cationic ß-cyclodextrin-based polymer for drug co-loading and SERS monitoring

    Get PDF
    Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic ß-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV–VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 ± 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection

    The combined use of gold nanoparticles and infrared radiation enables cytosolic protein delivery

    Full text link
    Cytosolic protein delivery remains elusive. The inability of most proteins to cross the cellular membrane is a huge hurdle. Here we explore the unique photothermal properties of gold nanorods (AuNRs) to trigger cytosolic delivery of proteins. Both partners, protein and AuNRs, are modified with a protease-resistant cell-penetrating peptide with nuclear targeting properties to induce internalization. Once internalised, spatiotemporal control of protein release is achieved by near-infrared laser irradiation in the safe second biological window. Importantly, catalytic amounts of AuNRs are sufficient to trigger cytosolic protein delivery. To the best of our knowledge, this is the first time that AuNRs with their maximum of absorption in the second biological window are used to deliver proteins into the intracellular space. This strategy represents a powerful tool for the cytosolic delivery of virtually any class of protein

    Ionic self-complementarity induces amyloid-like fibril formation in an isolated domain of a plant copper metallochaperone protein

    Get PDF
    BACKGROUND: Arabidopsis thaliana copper metallochaperone CCH is a functional homologue of yeast antioxidant ATX1, involved in cytosolic copper transport. In higher plants, CCH has to be transported to specialised cells through plasmodesmata, being the only metallochaperone reported to date that leaves the cell where it is synthesised. CCH has two different domains, the N-terminal domain conserved among other copper-metallochaperones and a C-terminal domain absent in all the identified non-plant metallochaperones. The aim of the present study was the biochemical and biophysical characterisation of the C-terminal domain of the copper metallochaperone CCH. RESULTS: The conformational behaviour of the isolated C-domain in solution is complex and implies the adoption of mixed conformations in different environments. The ionic self-complementary peptide KTEAETKTEAKVDAKADVE, derived from the C-domain of CCH, adopts and extended conformation in solution with a high content in β-sheet structure that induces a pH-dependent fibril formation. Freeze drying electron microscopy studies revealed the existence of well ordered amyloid-like fibrils in preparations from both the C-domain and its derivative peptide. CONCLUSION: A number of proteins related with copper homeostasis have a high tendency to form fibrils. The determinants for fibril formation, as well as the possible physiological role are not fully understood. Here we show that the plant exclusive C-domain of the copper metallochaperone CCH has conformational plasticity and forms fibrils at defined experimental conditions. The putative influence of these properties with plant copper delivery will be addressed in the future

    HAI Peptide and Backbone Analogs-Validation and Enhancement of Biostability and Bioactivity of BBB Shuttles

    Get PDF
    Low effectiveness and resistance to treatments are commonplace in disorders of the central nervous system (CNS). These issues concern mainly the blood-brain barrier (BBB), which preserves homeostasis in the brain and protects this organ from toxic molecules and biohazards by regulating transport through it. BBB shuttles-short peptides able to cross the BBB-are being developed to help therapeutics to cross this barrier. BBB shuttles can be discovered by massive exploration of chemical diversity (e.g. computational means, phage display) or rational design (e.g. derivatives from a known peptide/protein able to cross). Here we present the selection of a peptide shuttle (HAI) from several candidates and the subsequent in-depth in vitro and in vivo study of this molecule. In order to explore the chemical diversity of HAI and enhance its biostability, and thereby its bioactivity, we explored two new protease-resistant versions of HAI (i.e. the retro-D-version, and a version that was N-methylated at the most sensitive sites to enzymatic cleavage). Our results show that, while both versions of HAI are resistant to proteases, the retro-D-approach preserved better transport properties

    The Ethyl Acetate Extract of Leaves of Ugni molinae Turcz. Improves Neuropathological Hallmarks of Alzheimer's Disease in Female APPswe/PS1dE9 Mice Fed with a High Fat Diet

    Get PDF
    The most common type of dementia is Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by impairment in cognitive performance in aged individuals. Currently, there is no effective pharmacological treatment that cures the disease due to the lack of knowledge on the actual mechanisms involved in its pathogenesis. In the last decades, the amyloidogenic hypothesis has been the most studied theory trying to explain the origin of AD, yet it does not address all the concerns relating to its development. In the present study, a possible new preclinical treatment of AD was evaluated using the ethyl acetate extract (EAE) of leaves of Ugni molinae Turcz. (synonym Myrtus ugni Molina Family Myrtacea). The effects were assessed on female transgenic mice from a preclinical model of familial AD (APPswe/PS1dE9) combined with a high fat diet. This preclinical model was selected due to the already available experimental and observational data proving the relationship between obesity, gender, metabolic stress, and cognitive dysfunction; related to characteristics of sporadic AD. According to chemical analyses, EAE would contain polyphenols such as tannins, flavonoid derivatives, and phenolic acids, as well as pentacyclic triterpenoids that exhibit neuroprotective, anti-inflammatory, and antioxidant effects. In addition, the treatment evidenced its capacity to prevent deterioration of memory capacity and reduction of progression speed of AD neuropathology

    TMPRSS2/ERG Promotes Epithelial to Mesenchymal Transition through the ZEB1/ZEB2 Axis in a Prostate Cancer Model

    Get PDF
    Prostate cancer is the most common non-dermatologic malignancy in men in the Western world. Recently, a frequent chromosomal aberration fusing androgen regulated TMPRSS2 promoter and the ERG gene (TMPRSS2/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between TMPRSS2/ERG and other defective pathways in cancer progression. However, the unveiling of more specific pathways in which TMPRSS2/ERG takes part, requires further investigation. Using immortalized prostate epithelial cells we were able to show that TMPRSS2/ERG over-expressing cells undergo an Epithelial to Mesenchymal Transition (EMT), manifested by acquisition of mesenchymal morphology and markers as well as migration and invasion capabilities. These findings were corroborated in vivo, where the control cells gave rise to discrete nodules while the TMPRSS2/ERG-expressing cells formed malignant tumors, which expressed EMT markers. To further investigate the general transcription scheme induced by TMPRSS2/ERG, cells were subjected to a microarray analysis that revealed a distinct EMT expression program, including up-regulation of the EMT facilitators, ZEB1 and ZEB2, and down-regulation of the epithelial marker CDH1(E-Cadherin). A chromatin immunoprecipitation assay revealed direct binding of TMPRSS2/ERG to the promoter of ZEB1 but not ZEB2. However, TMPRSS2/ERG was able to bind the promoters of the ZEB2 modulators, IL1R2 and SPINT1. This set of experiments further illuminates the mechanism by which the TMPRSS2/ERG fusion affects prostate cancer progression and might assist in targeting TMPRSS2/ERG and its downstream targets in future drug design efforts
    corecore