1,602 research outputs found
An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)
The relation between the zero-age main sequence mass of a star and its
white-dwarf remnant (the initial-final mass relation) is a powerful tool for
exploration of mass loss processes during stellar evolution. We present an
empirical derivation of the initial-final mass relation based on spectroscopic
analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally
consistent data set, we show that the resultant white dwarf mass increases
monotonically with progenitor mass for masses greater than 4 solar masses, one
of the first open clusters to show this trend. We also find two massive white
dwarfs foreground to the cluster that are otherwise consistent with cluster
membership. These white dwarfs can be explained as former cluster members
moving steadily away from the cluster at speeds of <~0.5 km/s since their
formation and may provide the first direct evidence of the loss of white dwarfs
from open clusters. Based on these data alone, we constrain the upper mass
limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level
for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical
Journal Letters. Contains some acknowledgements not in accepted version (for
space reasons), otherwise identical to accepted versio
XMM-Newton observations of EF Eridani: the textbook example of low-accretion rate polars
Archival X-ray observations of EF Eridani obtained in a low state revealed
distinct X-ray detections at a luminosity L_X ~ 2 10^{29} erg/s, three orders
of magnitude below its high state value. The plasma temperature was found to be
as low as kT \loa 2 keV, a factor 10 below the high state. The X-ray/UV/IR
spectral energy distribution suggests faint residual accretion rather than
coronal emission as being responsible for the low-state X-ray emission. EF Eri
thus showed a clear transition from being shock-dominated in the high state to
be cyclotron-dominated in the low state. From the optical/UV spectral energy
distribution we re-determine the photospheric temperature of the white dwarf to
\~10000K. Contrary to earlier claims, WD model atmospheres produce sufficient
UV flux to reproduce the published GALEX flux and orbital modulation.Comment: A&A, in pres
Model atmosphere analysis of the extreme DQ white dwarf GSC2U J131147.2+292348
A new model atmosphere analysis for the peculiar DQ white dwarf discovered by
Carollo et al. (2002) is presented. The effective temperature and carbon
abundance have been estimated by fitting both the photometric data
(UBJ,VRF,IN,JHK) and a low resolution spectrum (3500<lambda<7500 A) with a new
model grid for helium-rich white dwarfs with traces of carbon (DQ stars). We
estimate Teff ~ 5120 +/- 200 K and log[C/He] ~ -5.8 +/- 0.5, which make GSC2U
J131147.2+292348 the coolest DQ star ever observed. This result indicates that
the hypothetical transition from C2 to C2H molecules around Teff = 6000 K,
which was inferred to explain the absence of DQ stars at lower temperatures,
needs to be reconsidered.Comment: 4 pages, 2 figures, accepted for publication in Astronomy and
Astrophysics Letter
A Study of Cool White Dwarfs in the Sloan Digital Sky Survey Data Release 12
In this work we study white dwarfs where to compare the differences in the
cooling of DAs and non-DAs and their formation channels. Our final sample is
composed by nearly DAs and more than non-DAs that are
simultaneously in the SDSS DR12 spectroscopic database and in the \textit{Gaia}
survey DR2. We present the mass distribution for DAs, DBs and DCs, where it is
found that the DCs are more massive than DAs and
DBs on average. Also we present the photometric effective temperature
distribution for each spectral type and the distance distribution for DAs and
non-DAs. In addition, we study the ratio of non-DAs to DAs as a function of
effective temperature. We find that this ratio is around for
effective temperature above and increases by a factor
of five for effective temperature cooler than . If we assume
that the increase of non-DA stars between to
is due to convective dilution, per cent of
the DAs should turn into non-DAs to explain the observed ratio. Our
determination of the mass distribution of DCs also agrees with the theory that
convective dilution and mixing are more likely to occur in massive white
dwarfs, which supports evolutionary models and observations suggesting that
higher mass white dwarfs have thinner hydrogen layers.Comment: 9 pages, 10 figures, accepted by MNRA
SDSS White Dwarf mass distribution at low effective temperatures
The DA white dwarfs in the Sloan Digital Sky Survey, as analyzed in the
papers for Data Releases 1 and 4, show an increase in surface gravity towards
lower effective temperatures below 11500 K. We study the various possible
explanations of this effect, from a real increase of the masses to
uncertainties or deficiencies of the atmospheric models. No definite answer is
found but the tentative conclusion is that it is most likely the current
description of convection in the framework of the mixing-length approximation,
which leads to this effect.Comment: to appear in the proceedings of the 16th European Workshop on White
Dwarfs, Barcelona, 200
Contribution of White Dwarfs to Cluster Masses
I present a literature search through 31 July 1997 of white dwarfs (WDs) in
open and globular clusters. There are 36 single WDs and 5 WDs in binaries known
among 13 open clusters, and 340 single WDs and 11 WDs in binaries known among
11 globular clusters. From these data I have calculated WD mass fractions for
four open clusters (the Pleiades, NGC 2168, NGC 3532, and the Hyades) and one
globular cluster (NGC 6121). I develop a simple model of cluster evolution that
incorporates stellar evolution but not dynamical evolution to interpret the WD
mass fractions. I augment the results of my simple model with N-body
simulations incorporating stellar evolution (Terlevich 1987; de la Feunte
Marcos 1996; Vesperini & Heggie 1997). I find that even though these clusters
undergo moderate to strong kinematical evolution the WD mass fraction is
relatively insensitive to kinematical evolution. By comparing the cluster mass
functions to that of the Galactic disk, and incorporating plausibility
arguments for the mass function of the Galactic halo, I estimate the WD mass
fraction in these two populations. I assume the Galactic disk is ~10 Gyrs old
(Winget et al. 1987; Liebert, Dahn, & Monet 1988; Oswalt et al. 1996) and that
the Galactic halo is ~12 Gyrs old (Reid 1997b; Gratton et al. 1997; Chaboyer et
al. 1998), although the WD mass fraction is insensitive to age in this range. I
find that the Galactic halo should contain 8 to 9% (alpha = -2.35) or perhaps
as much as 15 to 17% (alpha = -2.0) of its stellar mass in the form of WDs. The
Galactic disk WD mass fraction should be 6 to 7% (alpha = -2.35), consistent
with the empirical estimates of 3 to 7% (Liebert, Dahn, & Monet 1988; Oswalt et
al. 1996). (abridged)Comment: 20 pages, uuencoded gunzip'ed latex + 3 postscrip figures, to be
published in AJ, April, 199
Gemini spectra of 12000K white dwarf stars
We report signal-to-noise ratio SNR ~ 100 optical spectra for four DA white
dwarf stars acquired with the GMOS spectrograph of the 8m Gemini north
telescope. These stars have 18<g<19 and are around Teff ~ 12000 K, were the
hydrogen lines are close to maximum. Our purpose is to test if the effective
temperatures and surface gravities derived from the relatively low
signal-to-noise ratio ( ~ 21) optical spectra acquired by the Sloan
Digital Sky Survey through model atmosphere fitting are trustworthy. Our
spectra range from 3800A to 6000A, therefore including H beta to H9. The H8
line was only marginally present in the SDSS spectra, but is crucial to
determine the gravity. When we compare the values published by Kleinman et al.
(2004) and Eisenstein et al. (2006) with our line-profile (LPT) fits, the
average differences are: Delta Teff ~ 320 K, systematically lower in SDSS, and
Delta log g ~ 0.24 dex, systematically larger in SDSS. The correlation between
gravity and effective temperature can only be broken at wavelengths bluer than
3800 A. The uncertainties in Teff are 60% larger, and in log g larger by a
factor of 4, than the Kleinman et al. (2004) and Eisenstein et al. (2006)
internal uncertainties.Comment: 11 pages and 8 figure
The sdA problem - II. Photometric and Spectroscopic Follow-up
Subdwarf A star (sdA) is a spectral classification given to objects showing
H-rich spectra and sub-main sequence surface gravities, but effective
temperature lower than the zero-age horizontal branch. Their evolutionary
origin is an enigma. In this work, we discuss the results of follow-up
observations of selected sdAs. We obtained time resolved spectroscopy for 24
objects, and time-series photometry for another 19 objects. For two targets, we
report both spectroscopy and photometry observations. We confirm seven objects
to be new extremely-low mass white dwarfs (ELMs), one of which is a known
eclipsing star. We also find the eighth member of the pulsating ELM class.Comment: Accepted for publication in MNRAS. 19 pages, 30 figures, 6 table
FUSE observations of G226-29: First detection of the H_2 quasi-molecular satellite at 1150A
We present new FUV observations of the pulsating DA white dwarf G226-29
obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This ZZ Ceti
star is the brightest one of its class and the coolest white dwarf observed by
FUSE. We report the first detection of the broad quasi-molecular
collision-induced satellite of Ly-beta at 1150 A, an absorption feature that is
due to transitions which take place during close collisions of hydrogen atoms.
The physical interpretation of this feature is based on recent progress of the
line broadening theory of the far wing of Ly-beta. This predicted feature had
never been observed before, even in laboratory spectra.Comment: Accepted for publication in ApJ Letters; 6 pages, 3 figure
- …