1,820 research outputs found

    Individualized Virtual Reality Rehabilitation after Brain Injuries

    Get PDF
    Context-sensitive cognitive rehabilitation aims to address the specific deficits of patients by taking into account the unique strengths and weaknesses of each brain-injured individual. However, this approach requires customized assessments and trainings that are difficult to validate, time-consuming or simply unavailable for daily clinical use. Given the currently struggling economy and an increasing number of patients with brain injuries, a feasible and efficient solution for this individualized rehabilitation concept is needed. This dissertation addresses the development and evaluation of a VE-based training and assessment for context-sensitive cognitive rehabilitation. The proposed application is designed to closely resemble real-world places that are relevant to each individual neurological patient. Despite such an ecologically valid approach to rehabilitation, the application also integrates traditional process-specific tasks that offer potential for standardization and collection of normative data across patient populations. Three cognitive tasks (navigation, orientation, spatial memory) have been identified for use in individualized VEs. In three experimental trials the feasibility and validity of the technological implementation and theoretical foundation of these tasks has been assessed. In a fourth trial one of the tasks has been used for the rehabilitation of a brain-injured patient. Based on the results of these studies a workflow for the rapid development of VEs has been established which allows a VR developer to provide clinicians with individualized cognitive tasks. In addition, promising results for the clinical use and validation of the proposed system form the basis for future randomized controlled clinical trials. In conclusion, this dissertation elaborates how context-sensitive and process-specific rehabilitation approaches each offer a unique perspective on cognitive rehabilitation and how combining both through the means of VR technology may offer new opportunities to further this clinical discipline

    Towards Systematic Signature Testing

    Get PDF
    Abstract: The success and the acceptance of intrusion detection systems essentially depend on the accuracy of their analysis. Inaccurate signatures strongly trigger false alarms. In practice several thousand false alarms per month are reported which limit the successful deployment of intrusion detection systems. Most today deployed intrusion detection systems apply misuse detection as detection procedure. Misuse detection compares the recorded audit data with predefined patterns, the signatures. These are mostly empirically developed based on experience and knowledge of experts. Methods for a systematic development have been scarcely reported yet. A testing and correcting phase is required to improve the quality of the signatures. Signature testing is still a rather empirical process like signature development itself. There exists no test methodology so far. In this paper we present first approaches for a systematic test of signatures. We characterize the test objectives and present different test methods. Motivation The increasing dependence of human society on information technology (IT) systems requires appropriate measures to cope with their misuse. The enlarging technological complexity of IT systems increases the range of threats to endanger them. Besides preventive security measures reactive approaches are more and more applied to counter these threats. Reactive approaches allow responses and counter measures when security violations happened to prevent further damage. Complementary to preventive measures intrusion detection and prevention systems have proved as important means to protect IT resources. Meanwhile a wide range of commercial intrusion detection products is offered, especially for misuse detection. Nevertheless intrusion detection systems (IDSs) are not still deployed in a large scale. The reason is that the technology is considered not matured enough. Lacking reliability often resulting in high false alarm rates questions the practicability of intrusion detection systems The security function intrusion detection deals with the monitoring of IT systems to detect security violations. The decision which activities have to be considered as security violations in a given context is defined by the applied security policy. Two main complementary approaches are applied: anomaly and misuse detection. Anomaly detection aims at the exposure of abnormal user behavior. It requires a comprehensive set of data describing the normal user behavior. Although much research is done in this area it i

    Influence of Manufacturing Regimes on the Phase Transformation of Dental Zirconia

    Get PDF
    Background: The influence of typical manufacturing regimes for producing fixed dental prostheses (FDPs) from yttria partly-stabilized zirconia polycrystals (3Y/4Y/5Y-TZP) on the phase composition is quantified. Methods: Fixed dental prostheses (FDPs) were designed using a CAD process and machined from different Y-TZP blanks from two manufacturers differing in yttria contents. Subsequent to sintering, the FDPs were glaze fired and air-blasted using alumina particles. Phase composition was determined with X-ray diffraction and quantified with Rietveld refinement. Results: The blanks from VITA Zahnfabrik (VITA YZ HT, VITA YZ ST, VITA YZ XT) and Dental Direct (DD Bio ZX2, DD cube ONE, DD cube X2) featured a rhombohedral portion with rather small crystallites and a small monoclinic portion for 3Y/4Y-TZPs, which increased after machining and disappeared after sintering. Glaze firing and air-blasting with alumina particles had no significant influence on the phase composition. Conclusion: The phase history of dental zirconia is revealed, which may have implications on further processing and aging of the FDP (e.g. low temperature degradation) in mouth

    CAD/CAM Resin-Based Composites for Use in Long-Term Temporary Fixed Dental Prostheses

    Get PDF
    The aim of this in vitro study was to analyse the performance of CAD/CAM resin-based composites for the fabrication of long-term temporary fixed dental prostheses (FDP) and to compare it to other commercially available alternative materials regarding its long-term stability. Four CAD/CAM materials [Structur CAD (SC), VITA CAD-Temp (CT), Grandio disc (GD), and Lava Esthetic (LE)] and two direct RBCs [(Structur 3 (S3) and LuxaCrown (LC)] were used to fabricate three-unit FDPs. 10/20 FDPs were subjected to thermal cycling and mechanical loading by chewing simulation and 10/20 FDPs were stored in distilled water. Two FDPs of each material were forwarded to additional image diagnostics prior and after chewing simulation. Fracture loads were measured and data were statistically analysed. SC is suitable for use as a long-term temporary (two years) three-unit FDP. In comparison to CT, SC featured significantly higher breaking forces (SC > 800 N; CT < 600 N) and the surface wear of the antagonists was (significantly) lower and the abrasion of the FDP was similar. The high breaking forces (1100–1327 N) of GD and the small difference compared to LE regarding flexural strength showed that the material might be used for the fabrication of three-unit FDPs. With the exception of S3, all analysed direct or indirect materials are suitable for the fabrication of temporary FDPs

    Steigende Energiepreise: Ein Vorschlag fĂŒr eine ökologisch und sozial treffsichere Maßnahme

    Get PDF
    Der Krieg in der Ukraine trifft ĂŒber mehrere WirkungskanĂ€le die heimische Volkswirtschaft. So belasten stark gestiegene Energie- und Rohstoffpreise Haushalte und Unternehmen. Das Energiekosten-Entlastungspaket der Bundesregierung setzt Maßnahmen zur Abfederung dieser Belastungen. Mit diesem Policy Brief möchten wir einen konstruktiven Beitrag zur Debatte leisten und schlagen eine wirtschaftspolitische Maßnahme vor, die ökologisch und sozial treffsicher erscheint: eine Transferzahlung, die umgekehrt proportional zur motobezogenen Versicherungssteuer ausbezahlt wird

    Agile development of a virtual reality cognitive assessment

    Get PDF
    In recent years user-centered design, participatory design and agile development have seen much popularity in the field of software development. More specifically, applying these methods to user groups with cognitive and motor disabilities has been the topic of numerous publications. However, neuropsychological assessment and training require special consideration to include therapists and brain-injured patients into the development cycle. Application goals, development tools and communication between all stakeholders are interdependent and outlined in a framework that promotes elements of agile development. The framework is introduced by example of a virtual reality cognitive assessment for patients with traumatic brain injuries. The assessment has seen a total of 20 iterations over the course of nine months including changes in task content, task difficulty, user interaction and data collection. The framework and development of the cognitive assessment are discussed.Peer Reviewe

    The Influence of Surface Preparation, Chewing Simulation, and Thermal Cycling on the Phase Composition of Dental Zirconia

    Get PDF
    The effect of dental technical tools on the phase composition and roughness of 3/4/5 yttria-stabilized tetragonal zirconia polycrystalline (3y-/4y-/5y-TZP) for application in prosthetic dentistry was investigated. Additionally, the X-ray diffraction methods of Garvie-Nicholson and Rietveld were compared in a dental restoration context. Seven plates from two manufacturers, each fabricated from commercially available zirconia (3/4/5 mol%) for application as dental restorative material, were stressed by different dental technical tools used for grinding and polishing, as well as by chewing simulation and thermocycling. All specimens were examined via laser microscopy (surface roughness) and X-ray diffraction (DIN EN ISO 13356 and the Rietveld method). As a result, the monoclinic phase fraction was halved by grinding for the 3y-TZP and transformed entirely into one of the tetragonal phases by polishing/chewing for all specimens. The tetragonal phase t is preferred for an yttria content of 3 mol% and phase t″ for 5 mol%. Mechanical stress, such as polishing or grinding, does not trigger low-temperature degradation (LTD), but it fosters a phase transformation from monoclinic to tetragonal under certain conditions. This may increase the translucency and deteriorate the mechanical properties to some extent

    Is Micro X-ray Computer Tomography a Suitable Non-Destructive Method for the Characterisation of Dental Materials?

    Get PDF
    The aim of the study was to investigate the effect of X-rays used in micro X-ray computer tomography (”XCT) on the mechanical performance and microstructure of a variety of dental materials. Standardised bending beams (2 × 2 × 25 mm3) were forwarded to irradiation with an industrial tomograph. Using three-dimensional datasets, the porosity of the materials was quantified and flexural strength was investigated prior to and after irradiation. The thermal properties of irradiated and unirradiated materials were analysed and compared by means of differential scanning calorimetry (DSC). Single ”XCT measurements led to a significant decrease in flexural strength of polycarbonate with acrylnitril-butadien-styrol (PC-ABS). No significant influence in flexural strength was identified for resin-based composites (RBCs), poly(methyl methacrylate) (PMMA), and zinc phosphate cement (HAR) after a single irradiation by measurement. However, DSC results suggest that changes in the microstructure of PMMA are possible with increasing radiation doses (multiple measurements, longer measurements, higher output power from the X-ray tube). In summary, it must be assumed that X-ray radiation during ”XCT measurement at high doses can lead to changes in the structure and properties of certain polymers

    Characterisation of the Filler Fraction in CAD/CAM Resin-Based Composites

    Get PDF
    The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (”XCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 ”m were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties
    • 

    corecore