191 research outputs found
Bartonella quintana in Domestic Cat
We recovered Bartonella quintana DNA from dental pulp of a domestic cat. This study, the first to detect B. quintana in a nonhuman mammal, changes our understanding of the epidemiology of this infection and proposes that cats may be an emerging source of human infection
Drought and Waterlogging Stress Regimes in Northern Peatlands Detected Through Satellite Retrieved Solar-Induced Chlorophyll Fluorescence
The water table depth (WTD) in peatlands determines the soil carbon decomposition rate and influences vegetation growth, hence the above-ground carbon assimilation. Here, we used satellite-observed Solar-Induced chlorophyll Fluorescence (SIF) as a proxy of Gross Primary Production (GPP) to investigate water-related vegetation stress over northern peatlands. A linear model with interaction effects was used to relate short- and long-term anomalies in SIF with WTD anomalies and the absolute WTD. Most locations showed the occurrence of drought and waterlogging stress though regions with exclusively waterlogging or drought stress were also detected. As a spatial median, minimal water-related vegetation stress was found for a WTD of -0.22 m (short-term) and -0.20 m (long-term) (+/- 0.01 m, 95% confidence interval of statistical uncertainty). The stress response observed with SIF is supported by an analysis of in situ GPP data. Our findings provide insight into how changes in WTD of northern peatlands could affect GPP under climate change.Water table depth is an important variable influencing the carbon cycle and vegetation growth in northern peatlands. In this paper, the impact of changing wetness conditions on vegetation growth over peatlands was studied through satellite measurements of solar-induced fluorescence (SIF), which is a radiation signal emitted by vegetation during photosynthesis. Previous studies over ecosystems on mineral soil, that is, not over peatland, suggested a response of SIF to drought conditions. In our study, it was shown that peatland vegetation experiences moisture-related growth stress under both very wet and very dry conditions, which might reduce the photosynthesis efficiency and the ability to capture and store CO2. Stress due to drought conditions was detected for peatlands in the south of the Western Siberian Lowlands and the Boreal Plains. Stress due to prolonged wet conditions occurred for example, in the north of the Western Siberian Lowlands and the north of the Hudson Bay Lowlands.Spaceborne Solar-Induced Fluorescence (SIF) data was used to analyze soil moisture-related vegetation stress regimes in northern peatlandsFor most locations, waterlogging as well as drought stress regimes occurred and alternated depending on peatland water level dynamicsThe SIF-based stress response observations are supported by in situ data of Gross Primary Productio
A study of the relationships between oligonucleotide properties and hybridization signal intensities from NimbleGen microarray datasets
Well-defined relationships between oligonucleotide properties and hybridization signal intensities (HSI) can aid chip design, data normalization and true biological knowledge discovery. We clarify these relationships using the data from two microarray experiments containing over three million probes from 48 high-density chips. We find that melting temperature (Tm) has the most significant effect on HSI while length for the long oligonucleotides studied has very little effect. Analysis of positional effect using a linear model provides evidence that the protruding ends of probes contribute more than tethered ends to HSI, which is further validated by specifically designed match fragment sliding and extension experiments. The impact of sequence similarity (SeqS) on HSI is not significant in comparison with other oligonucleotide properties. Using regression and regression tree analysis, we prioritize these oligonucleotide properties based on their effects on HSI. The implications of our discoveries for the design of unbiased oligonucleotides are discussed. We propose that isothermal probes designed by varying the length is a viable strategy to reduce sequence bias, though imposing selection constraints on other oligonucleotide properties is also essential
Necrotrophism Is a Quorum-Sensing-Regulated Lifestyle in Bacillus thuringiensis
How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading
IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin
The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Control of paratuberculosis: who, why and how. A review of 48 countries
Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis
- …