53 research outputs found

    Investigating the process of ethical approval in citizen science research. The case of public health

    Get PDF
    Undertaking citizen science research in Public Health involving human subjects poses significant challenges concerning the traditional process of ethical approval. It requires an extension of the ethics of protection of research subjects in order to include the empowerment of citizens as citizen scientists. This paper investigates these challenges and illustrates the ethical framework and the strategies developed within the CitieS-Health project. It also proposes first recommendations generated from the experiences of five citizen science pilot studies in environmental epidemiology within this project

    In vivo imaging of microenvironmental and anti-PD-L1-mediated dynamics in cancer using S100A8/S100A9 as an imaging biomarker

    Get PDF
    Purpose: As a promotor of tumor invasion and tumor microenvironment (TME) formation, the protein complex S100A8/S100A9 is associated with poor prognosis. Our aim was to further evaluate its origin and regulatory effects, and to establish an imaging biomarker for TME activity. Methods: S100A9−/−cells (ko) were created from syngeneic murine breast cancer 4T1 (high malignancy) and 67NR (low malignancy) wildtype (wt) cell lines and implanted into either female BALB/c wildtype or S100A9−/− mice (n = 10 each). Anti-S100A9-Cy5.5-targeted fluorescence reflectance imaging was performed at 0 h and 24 h after injection. Potential early changes of S100A9-presence under immune checkpoint inhibition (anti-PD-L1, n = 7 vs. rat IgG2b as isotype control, n = 3) were evaluated. Results: In S100A9−/−mice contrast-to-noise-ratios were significantly reduced for wt and S100A9−/−tumors. No significant differences were detected for 4T1 ko and 67NR ko cells as compared to wildtype cells. Under anti-PD-L1 treatment S100A9 presence significantly decreased compared with the control group. Conclusion: Our results confirm a secretion of S100A8/S100A9 by the TME, while tumor cells do not apparently release the protein. Under immune checkpoint inhibition S100A9-imaging reports an early decrease of TME activity. Therefore, S100A9-specific imaging may serve as an imaging biomarker for TME formation and activity

    Homogeneity and persistence of transgene expression by omitting antibiotic selection in cell line isolation

    Get PDF
    Nonuniform, mosaic expression patterns of transgenes are often linked to transcriptional silencing, triggered by epigenetic modifications of the exogenous DNA. Such phenotypes are common phenomena in genetically engineered cells and organisms. They are widely attributed to features of transgenic transcription units distinct from endogenous genes, rendering them particularly susceptible to epigenetic downregulation. Contrary to this assumption we show that the method used for the isolation of stably transfected cells has the most profound impact on transgene expression patterns. Standard antibiotic selection was directly compared to cell sorting for the establishment of stable cells. Only the latter procedure could warrant a high degree of uniformity and stability in gene expression. Marker genes useful for the essential cell sorting step encode mostly fluorescent proteins. However, by combining this approach with site-specific recombination, it can be applied to isolate stable cell lines with the desired expression characteristics for any gene of interest

    Magnetic moments of short-lived nuclei with part-per-million accuracy: Towards novel applications of β\beta-detected NMR in physics, chemistry and biology

    Get PDF
    We determine for the first time the magnetic dipole moment of a short-lived nucleus with part-per-million (ppm) accuracy. To achieve this two orders of magnitude improvement over previous studies, we implement a number of innovations into our β\beta-detected Nuclear Magnetic Resonance (β\beta-NMR) setup at ISOLDE/CERN. Using liquid samples as hosts we obtain narrow, sub-kHz linewidth, resonances, while a simultaneous in-situ 1^1H NMR measurement allows us to calibrate and stabilize the magnetic field to ppm precision, thus eliminating the need for additional β\beta-NMR reference measurements. Furthermore, we use ab initio calculations of NMR shielding constants to improve the accuracy of the reference magnetic moment, thus removing a large systematic error. We demonstrate the potential of this combined approach with the 1.1 s half-life radioactive nucleus 26^{26}Na, which is relevant for biochemical studies. Our technique can be readily extended to other isotopic chains, providing accurate magnetic moments for many short-lived nuclei. Furthermore, we discuss how our approach can open the path towards a wide range of applications of the ultra-sensitive β\beta-NMR in physics, chemistry, and biology.Comment: re-submitte

    An evaluation tool kit of air quality micro-sensing units.

    Get PDF
    Recent developments in sensory and communication technologies have made the development of portable air-quality (AQ) micro-sensing units (MSUs) feasible. These MSUs allow AQ measurements in many new applications, such as ambulatory exposure analyses and citizen science. Typically, the performance of these devices is assessed using the mean error or correlation coefficients with respect to a laboratory equipment. However, these criteria do not represent how such sensors perform outside of laboratory conditions in large-scale field applications, and do not cover all aspects of possible differences in performance between the sensor-based and standardized equipment, or changes in performance over time. This paper presents a comprehensive Sensor Evaluation Toolbox (SET) for evaluating AQ MSUs by a range of criteria, to better assess their performance in varied applications and environments. Within the SET are included four new schemes for evaluating sensors' capability to: locate pollution sources; represent the pollution level on a coarse scale; capture the high temporal variability of the observed pollutant and their reliability. Each of the evaluation criteria allows for assessing sensors' performance in a different way, together constituting a holistic evaluation of the suitability and usability of the sensors in a wide range of applications. Application of the SET on measurements acquired by 25 MSUs deployed in eight cities across Europe showed that the suggested schemes facilitates a comprehensive cross platform analysis that can be used to determine and compare the sensors' performance. The SET was implemented in R and the code is available on the first author's website.CITI-SENSE, initiated in October 2012, is a four year Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement 308524

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Reduction of harmonics by 18-pulse rectifier

    Get PDF
    Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation

    Hydrogeochemistry of Alpine springs from North Slovenia: Insights from stable isotopes

    No full text
    Springwater chemistry and carbon cycling in our study mainly depend on geological composition of the aquifer. The investigated Alpine springs in Slovenia represent waters strongly influenced by chemicalweathering ofMesozoic limestone and dolomite, only one spring was located in Permo-Carboniferous shales. The carbon isotopic composition of dissolved inorganic carbon (DIC) and suspended organic carbon (POC) as well as major solute concentrations yielded insights into the origin of carbon in Alpine spring waters. The major solute composition was dominated by carbonic acid dissolution of calcite. Waters were generally close to saturation with respect to calcite, and dissolved CO2 was up to fortyfold supersaturated relative to the atmosphere. δ13 C of DIC indicates the portion of soil CO2 contributed in water and is related with soil thickness of infiltrating water in aquifer and could be therefore used as a tool for vulnerability assessment. The δ13 C of DIC ranged from−15.8‰ to −1.5‰ and indicated less and more vulnerable aquifers. Mass balances of carbon for spring waters draining carbonate rocks suggest that carbonate dissolution contributes from approximately 49% to 86% and degradation of organic matter from 13.7% to 51.4%, depending on spring and its relation with rock type, soil environment, and geomorphic position. Stable oxygen isotope composition of water (δ18OH2O), and tritium values range from −12.2 to −9.3‰and from6.4 to 9.8 TU, respectively and indicate recharge frommodern precipitation. According to active decay of tritiumand tritiumin modern precipitation the age of spring waters are estimated to be about 2.6 years for springs located in Julian Alps, about 5 years for springs located in Karavanke and about 5 years for springs located in Kamniško–Savinjske Alps.Published40-544.5. Studi sul degassamento naturale e sui gas petroliferiJCR Journalrestricte

    Hydrogeochemistry of Alpine springs from North Slovenia: Insights from stable isotopes

    No full text
    Springwater chemistry and carbon cycling in our study mainly depend on geological composition of the aquifer. The investigated Alpine springs in Slovenia represent waters strongly influenced by chemicalweathering ofMesozoic limestone and dolomite, only one spring was located in Permo-Carboniferous shales. The carbon isotopic composition of dissolved inorganic carbon (DIC) and suspended organic carbon (POC) as well as major solute concentrations yielded insights into the origin of carbon in Alpine spring waters. The major solute composition was dominated by carbonic acid dissolution of calcite. Waters were generally close to saturation with respect to calcite, and dissolved CO2 was up to fortyfold supersaturated relative to the atmosphere. δ13 C of DIC indicates the portion of soil CO2 contributed in water and is related with soil thickness of infiltrating water in aquifer and could be therefore used as a tool for vulnerability assessment. The δ13 C of DIC ranged from−15.8‰ to −1.5‰ and indicated less and more vulnerable aquifers. Mass balances of carbon for spring waters draining carbonate rocks suggest that carbonate dissolution contributes from approximately 49% to 86% and degradation of organic matter from 13.7% to 51.4%, depending on spring and its relation with rock type, soil environment, and geomorphic position. Stable oxygen isotope composition of water (δ18OH2O), and tritium values range from −12.2 to −9.3‰and from6.4 to 9.8 TU, respectively and indicate recharge frommodern precipitation. According to active decay of tritiumand tritiumin modern precipitation the age of spring waters are estimated to be about 2.6 years for springs located in Julian Alps, about 5 years for springs located in Karavanke and about 5 years for springs located in Kamniško–Savinjske Alps
    corecore