206 research outputs found
Novel approach to determination of sorption in pervaporation process: a case study of isopropanol dehydration by polyamidoimideurea membranes
Development of novel membranes with optimal performance, selectivity, and stability is a key research area in membrane technology. In the present work aromatic polyamidoimideurea (PAIU) is synthesized and tested as promising membrane material for separation of water and alcohol mixtures. The PAIU membrane structure, density, and transport properties are studied. Mass transfer of water and isopropanol through the membrane is estimated by sorption and pervaporation tests to determine equilibrium sorption degree, diffusion coefficients, flux through the membrane, and separation factor. Two techniques of sorption study from liquid and from vapor phases are used as novel approach to experimental study of mass transfer. The vapor sorption calorimetry permits to analyze the behavior of the polymer material in sorption process. In pervaporation of water-isopropanol mixture, almost pure water mainly permeates through PAIU membrane. To improve the performance, a double layer membrane containing a thin PAIU layer on the surface of porous poly(phenylene oxide) support is developed. The double layer membrane is extremely effective in dehydration of isopropanol.Russian Science Foundation (RSF): grant 16-13-10164
Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids
In this paper, ionic liquid treatment was applied to produce nanometric cellulose particles of two polymorphic forms. A complex characterization of nanofillers including wide-angle X-ray scattering, Fourier transform infrared spectroscopy, and particle size determination was performed. The evaluated ionic liquid treatment was effective in terms of nanocrystalline cellulose production, leaving chemical and supermolecular structure of the materials intact. However, nanocrystalline cellulose II was found to be more prone to ionic liquid hydrolysis leading to formation larger amount of small particles. Each nanocrystalline cellulose was subsequently mixed with a solution of chitosan, so that composite films containing 1, 3, and 5% mass/mass of nanometric filler were obtained. Reference samples of chitosan and chitosan with micrometric celluloses were also solvent casted. Thermal, mechanical, and morphological properties of films were tested and correlated with properties of filler used. The results of both, tensile tests and thermogravimetric analysis showed a significant discrepancy between composites filled with nanocrystalline cellulose I and nanocrystalline cellulose II
Interactions between microfibrillar cellulose and carboxymethyl cellulose in an aqueous suspension
New microstructures with interesting, unique and stable textures, particularly relevant to food systems were created by redispersing Microfibrillar cellulose (MFC). This paper reports the interactions between microfibrillar cellulose and carboxymethyl cellulose (CMC) in redispersed aqueous suspensions, by using rheological measurements on variable ratios of MFC/CMC and correlating these with apparent water mobility as determined by time domain NMR. MFC is a network of cellulose fibrils produced by subjecting pure cellulose pulp to high-pressure mechanical homogenisation. A charged polymer such as CMC reduces the aggregation of microfibrillar/fibre bundles upon drying. Small amplitude oscillatory rheological analysis showed the viscoelastic gel-like behaviour of suspensions which was independent of the CMC content in the MFC suspension. A viscous synergistic effect was observed when CMC was added to MFC before drying, leading to improved redispersibility of the suspension. Novel measurements of NMR relaxation suggested that the aggregated microfibrillar/fibre bundles normally dominate the relaxation times (T2). The dense microfibrillar network plays an important role in generating stable rheological properties and controlling the mobility of the polymer and hence the apparent mobility of the water in the suspensions
Molecular dynamics simulations of liquid crystalline phases of dodecyltrimethylammonium chloride
Molecular dynamics simulations of four different phases of a cationic surfactant dodecyltrimethylammonium chloride (DTAC) are presented. It is shown that when the topology of the initial configuration matches that of the equilibrium structure, the required equilibration times of MD simulations are only few nanoseconds. The methods of building initial configurations for simulations of the hexagonal and Ia3d bicontinuous cubic phases are described. The simulation results show that locally, the hydrophilic part of the hexagonal phase has a flat bilayer structure. Analysis of radial distribution functions shows that the properties of the hydrophilic layers of the phases are dominated by ion–ion and ion–water interactions. The dynamic properties of the system are dependent on the curvature of the aggregates, and calculated diffusion coefficients are in agreement with experimental NMR data
- …