23,690 research outputs found

    R-process and alpha-elements in the Galactic disk: Kinematic correlations

    Full text link
    Recent studies of elemental abundances in the Galactic halo and in the Galactic disk have underscored the possibility to kinematically separate different Galactic subcomponents. Correlations between the galactocentric rotation velocity and various element ratios were found, providing an important means to link different tracers of star formation and metal enrichment to the Galactic components of different origin (collapse vs. accretion). In the present work we determine stellar kinematics for a sample of 124 disk stars, which we derive from their orbits based on radial velocities and proper motions from the the literature. Our stars form a subsample of the Edvardsson et al. (1993) sample and we concentrate on three main tracers: (i) Europium as an r-process element is predominantly produced in Supernovae of type II. (ii) Likewise, alpha-elements, such as Ca, Si, Mg, are synthesised in SNe II, contrary to iron, which is being produced preferentially in SNe Ia. (iii) The s-process element Barium is a measure of the relative contribution of AGB stars to the Galaxy's enrichment history and has been shown to be an indicator for distinguishing between thin and thick disk stars. All such studies reveal, basically, that stars with low galactocentric rotational velocity tend to have high abundances of alpha-elements and Eu, but lower abundances of, e.g., Ba.Comment: 5 pages, 2 figures, Poster contribution to appear in "Planets To Cosmology: Essential Science In Hubble's Final Years", proceedings of the May 2004 STScI Symposium, M. Livio (ed.), (Cambridge University Press

    Analysis of pressure distortion testing

    Get PDF
    The development of a distortion methodology, method D, was documented, and its application to steady state and unsteady data was demonstrated. Three methodologies based upon DIDENT, a NASA-LeRC distortion methodology based upon the parallel compressor model, were investigated by applying them to a set of steady state data. The best formulation was then applied to an independent data set. The good correlation achieved with this data set showed that method E, one of the above methodologies, is a viable concept. Unsteady data were analyzed by using the method E methodology. This analysis pointed out that the method E sensitivities are functions of pressure defect level as well as corrected speed and pattern

    On the mechanism for orbital-ordering in KCuF3

    Get PDF
    The Mott insulating perovskite KCuF3 is considered the archetype of an orbitally-ordered system. By using the LDA+dynamical mean-field theory (DMFT) method, we investigate the mechanism for orbital-ordering (OO) in this material. We show that the purely electronic Kugel-Khomskii super-exchange mechanism (KK) alone leads to a remarkably large transition temperature of T_KK about 350 K. However, orbital-order is experimentally believed to persist to at least 800 K. Thus Jahn-Teller distortions are essential for stabilizing orbital-order at such high temperatures.Comment: 4 pages, 5 figure

    On the temperature dependence of correlation functions in the space like direction in hot QCD

    Full text link
    We study the temperature dependence of quark antiquark correlations in the space like direction. In particular, we predict the temperature dependence of space like Bethe-Salpeter amplitudes using recent Lattice gauge data for the space like string potential. We also investigate the effect of the space like string potential on the screening mass and discuss possible corrections which may arise when working with point sources.Comment: 15 pages 8 figures (not included, will be sent on request), (SUNY-NTG-94-3

    Interaction-assisted propagation of Coulomb-correlated electron-hole pairs in disordered semiconductors

    Full text link
    A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.Comment: 4 pages and 3 ps figure

    The luminosity function of Palomar 5 and its tidal tails

    Full text link
    We present the main sequence luminosity function of the tidally disrupted globular cluster Palomar 5 and its tidal tails. For this work we analyzed imaging data obtained with the Wide Field Camera at the INT (La Palma) and data from the Wide Field Imager at the MPG/ESO 2.2 m telescope at La Silla down to a limiting magnitude of approximately 24.5 mag in B. Our results indicate that preferentially fainter stars were removed from the cluster so that the LF of the cluster's main body exhibits a significant degree of flattening compared to other GCs. This is attributed to its advanced dynamical evolution. The LF of the tails is, in turn, enhanced with faint, low-mass stars, which we interpret as a consequence of mass segregation in the cluster.Comment: 4 pages, 3 figures, to be published in the proceedings of the conference "Satellites and tidal streams" held at La Palma, Canary Islands, May 26 - 30, 200

    A Two-Parameter Recursion Formula For Scalar Field Theory

    Get PDF
    We present a two-parameter family of recursion formulas for scalar field theory. The first parameter is the dimension (D)(D). The second parameter (ζ\zeta) allows one to continuously extrapolate between Wilson's approximate recursion formula and the recursion formula of Dyson's hierarchical model. We show numerically that at fixed DD, the critical exponent Îł\gamma depends continuously on ζ\zeta. We suggest the use of the ζ−\zeta -independence as a guide to construct improved recursion formulas.Comment: 7 pages, uses Revtex, one Postcript figur

    Off-diagonal disorder in the Anderson model of localization

    Full text link
    We examine the localization properties of the Anderson Hamiltonian with additional off-diagonal disorder using the transfer-matrix method and finite-size scaling. We compute the localization lengths and study the metal-insulator transition (MIT) as a function of diagonal disorder, as well as its energy dependence. Furthermore we investigate the different influence of odd and even system sizes on the localization properties in quasi one-dimensional systems. Applying the finite-size scaling approach in conjunction with a nonlinear fitting procedure yields the critical parameters of the MIT. In three dimensions, we find that the resulting critical exponent of the localization length agrees with the exponent for the Anderson model with pure diagonal disorder.Comment: 12 pages including 4 EPS figures, accepted for publication in phys. stat. sol. (b
    • 

    corecore