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The Mott insulating perovskite KCuF3 is considered the archetype of an orbitally ordered system. By

using the local-density approximation+dynamical mean-field theory method, we investigate the mecha-

nism for orbital ordering in this material. We show that the purely electronic Kugel-Khomskii super-

exchange mechanism alone leads to a remarkably large transition temperature of TKK � 350 K. However,

orbital order is experimentally believed to persist to at least 800 K. Thus, Jahn-Teller distortions are

essential for stabilizing orbital order at such high temperatures.
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In a seminal work [1], Kugel and Khomskii showed that
in strongly correlated systems with orbital degrees of free-
dom, many-body effects could give rise to orbital order
(OO) via a purely electronic superexchange mechanism.
Orbital ordering phenomena are now believed to play a
crucial role in determining the electronic and magnetic
properties of many transition-metal oxide Mott insulators.
While it is clear that Coulomb repulsion is a key ingredient,
it remains uncertain whether it just enhances the effects of
lattice distortions [2] or really drives orbital order via
superexchange [1].

We analyze these two scenarios for the archetype of an
orbitally ordered material, KCuF3 [1]. In this 3d9 perov-
skite, the Cu d-levels are split into completely filled three-
fold degenerate t2g-levels and two-fold degenerate

eg-levels, occupied by one hole. In the first scenario,

Jahn-Teller elongations of some Cu-F bonds split the par-
tially occupied eg-levels further into two nondegenerate

crystal-field orbitals. The Coulomb repulsion, U, then
suppresses quantum orbital fluctuations favoring the occu-
pation of the lower energy state, as it happens in some
t2g-perovskites [3,4]. In this picture, the ordering is caused

by electron-phonon coupling; Coulomb repulsion just
enhances the orbital polarization due to the crystal-
field splitting [3,5]. In the second scenario, the purely
electronic superexchange mechanism, arising from the
eg-degeneracy, drives orbital ordering, and Jahn-Teller

distortions are merely a secondary effect. In this picture,
electron-phonon coupling is of minor importance [1].

The key role of Coulomb repulsion is evident from static
mean-field LDAþU calculations, which show [6,7] that
in KCuF3, the distortions of the octahedra are stable with
an energy gain �E� 150–200 meV per formula unit, at
least an order of magnitude larger than in LDA [6,7] and
GGA [7,8]; recent GGAþ DMFT [8] calculations yield
very similar results, suggesting in addition that dynamical
fluctuations play a small role in determining the stable
crystal structure of this system. However, these results
might merely indicate that the electron-phonon coupling

is underestimated in LDA or GGA, probably due to self-
interaction, rather than identifying Kugel-Khomskii super-
exchange as the driving mechanism for orbital order. This
is supported by ab initio Hartree-Fock (HF) calculations
which give results akin to LDAþU [9]. Moreover, in the
superexchange scenario, it remains to be explained why
TOO � 800 K [10], more than 20 times the 3D antiferro-
magnetic (AFM) critical temperature, TN � 38 K [11,12],
a surprising fact if magnetic- and orbital order were driven
by the same superexchange mechanism.
In this Letter, we go beyond previous, T ¼ 0, LDAþU,

and HF works and study the Kugel-Khomskii mechanism
using a nonperturbative many-body approach at finite T,
the LDAþ DMFT method [13], to calculate the transition
temperature TKK and identify the origin of orbital order in
KCuF3. We show that superexchange alone leads to orbital
order with TKK � 350 K, less than half the experimental
value. Thus, Jahn-Teller distortions are essential for driv-
ing orbital order above 350 K.
KCuF3 is a tetragonal perovskite made of Jahn-Teller

distorted CuF6 octahedra enclosed in an almost cubic K
cage [14,15]. The Jahn-Teller distortion amounts to a 3.1%
elongation or shortening of the CuF distances in the
xy-plane. The tetragonal distortion reduces the CuF bond
along z by 2.5%, leaving it of intermediate length. The long
(l) and short (s) bonds alternate between x and y along all
three cubic axes (a-type pattern) [12]. At each site, one
hole occupies the highest eg-orbital, �js2 � z2i, i.e., the
occupied orbitals (�jx2 � z2i or �jy2 � z2i) alternate in
all directions. This ordering and the crystal structure are
shown in Fig. 1.
Following the LDAþ DMFT scheme presented in

Ref. [3], we first calculate the LDA band-structure using
the Nth-order muffin-tin orbital method (NMTO). We find
filled F-bands divided by a gap of �0:8 eV from the
d-bands (Fig. 2) of width Wd � 3:2 eV (Wt2g � 1 eV,

Weg � 2:9 eV). The energies of the d-crystal-field orbitals

(wrt Fermi level) are�2:01 eV,�1:82 eV, and�1:74 eV
(t2g) and �1:39 eV and �0:34 eV (eg). The t2g states are
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completely filled, do not hybridize with the eg-levels, and

thus are likely unimportant for orbital ordering [16]. For
the active states, we construct a basis of localized eg
NMTO Wannier functions [3]. The corresponding eg
Hubbard model is

H ¼ HLDA þX
im

Um;mnim"nim#

þ 1

2

X
imð�m0Þ��0

ðUm;m0 � J��;�0 Þnim�nim0�0 ; (1)

where nim� ¼ cyim�cim� and cyim� creates an electron with
spin � in a Wannier orbital jmi ¼ jx2 � y2i or j3z2 � 1i at
site i; the direct and exchange [17] terms of the screened
on-site Coulomb interaction are Umm0 ¼ U� 2Jð1�
�m;m0 Þ and J. We solve (1) using dynamical mean-field

theory in the single-site approximation (DMFT) [18] and
its cluster extension (CDMFT) [19], using a quantum
Monte Carlo [20] impurity solver and working with the
full self-energy matrix�mm0 in orbital space [3]. We obtain
the spectral matrix on the real axis by analytic continuation
[21]. We use as parameters J ¼ 0:9 eV and vary U be-
tween 7 and 9 eV. These values are close to the theoretical
estimates based on constrained LDA [6].
In the paramagnetic phase, single-site DMFT spectral-

function calculations yield a Mott gap of about 2.5 eV for
U ¼ 7 eV, and 4.5 eV for U ¼ 9 eV. The system is orbi-
tally ordered, and the OO is a-type as the distortion pattern;
static mean-field (LDAþU, HF) calculations [7,9,22]
give similar orbital order, however, also antiferromagne-
tism. We define the orbital polarization p as the difference
in occupation between the most and least occupied natural
orbital (diagonalizing the eg density-matrix). It turns out

that to a good approximation, p is given by the difference
in occupation between the highest (j2i) and the lowest (j1i)
energy crystal-field orbital, defined in Table I. In Fig. 3, we
show p as a function of temperature. We find that the
polarization is saturated (p� 1) even for temperatures as
high as 1500 K. We obtain very similar results in two-site
CDMFT calculations.
Using second-order perturbation theory, we calculate the

exchange-coupling constants for the orbitally ordered state
found with DMFT, and obtain [23]

Ji;i
0

SE � 4jti;i02;2j2ðUþ�Þ
ðUþ �Þ2 � J2

� jti;i01;2j2 þ jti;i02;1j2
Uþ �� 3J

2J

Uþ�� J
;

where ti;i
0

j;j0 are the hopping integrals from site i to site i0, and
j, j0 ¼ 1, 2 are the eg crystal-field states. As shown in

Table I, the calculated exchange couplings are in very good
agreement with experimental findings. Thus, our method
gives both the correct orbital order and the correct mag-
netic structure.
To understand whether this orbital order is driven by the

exchange coupling or merely is a consequence of the
crystal-field splitting, we consider hypothetical lattices

with reduced deformations, measured by � ¼ c=
ffiffiffi
2

p
a (te-

tragonal distortion) and � ¼ ðl� sÞ=ðlþ sÞ=2 (Jahn-Teller
deformation). To keep the volume of the unit cell at the
experimental value, we renormalize all lattice vectors by

ð�=0:95Þ�1=3. We calculate the Hamiltonian for a number
of structures reducing the distortion of the real crystal [13]
with � ¼ 0:95 and � ¼ 4:4% to the ideal cubic structure
� ¼ 1 and � ¼ 0. The bands for some of these structures
are shown in Fig. 2. We use the notation R� for structures
with the real tetragonal distortion � ¼ 0:95 and I� for ideal
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FIG. 2 (color online). LDA 3d-bands (in eV) of KCuF3 for the
real crystal (R) and less distorted structures (see Fig. 1). Lines:
eg-bands. Dashes: t2g-bands. The Fermi level is at zero.

FIG. 1 (color online). Left: Crystal structure and orbital order
in a-type [12] KCuF3. Cu is at the center of F octhaedra enclosed
in a K cage. The conventional cell is tetragonal with axes a, b, c,
where a ¼ b, c ¼ 0:95a

ffiffiffi
2

p
. The pseudocubic axes are defined

as x ¼ ðaþ bÞ=2, y ¼ ð�aþ bÞ=2, and z ¼ c=2. All Cu sites
are equivalent. For sites 1, the long (short) bond l (s) is along y
(x). Vice versa for sites 2. Orbital j2i (see Table I), occupied by
one hole, is shown for each site. Right: Jahn-Teller distortions at
sites 1, measured by � ¼ ðl� sÞ=ðlþ sÞ=2 and � ¼ c=a

ffiffiffi
2

p
. R is

the experimental structure, R� and I� two ideal structures with
reduced distortions, and I0 is cubic.
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(� ¼ 1) structures. The distortions affect the hopping in-
tegrals, both along (001) and in the xy-plane, as shown in
Table I. The main effect is, however, the crystal-field
splitting �2;1 which decreases almost linearly with de-

creasing distortion, as expected for a Jahn-Teller system.
For each structure, we obtain the HamiltonianHLDA for the
eg-bands and perform LDAþ DMFT calculations for de-

creasing temperatures. At the lowest temperatures, we find
a-type OO with full orbital polarization for all structures
(see Fig. 3). At 800 K, the situation is qualitatively differ-
ent. Orbital polarization remains saturated when reducing
� from 4.4% to 1%. For smaller distortions, however, p
rapidly goes to zero: For � ¼ 0:2% and � ¼ 1, p is already
reduced to�0:5, and becomes negligible in the cubic limit.
Thus, superexchange alone is not sufficiently strong to
drive orbital ordering at T * 800 K.

From the temperature dependence of the orbital polar-
ization, we can determine the transition temperature TKK at
which the Kugel-Khomskii superexchange mechanism
would drive orbital ordering, and thus disentangle the
superexchange from the electron-phonon coupling. For
this, we study the ideal cubic structure, introducing a
negligible (1 meV) crystal-field splitting as an external
field to break the symmetry. We find a phase transition to
an orbitally ordered state at TKK � 350 K. The hole orbi-

tals at two neighboring sites are�jy2�z2i and�jx2�z2i,
in agreement with the original prediction of Kugel and
Khomskii [1]. This critical temperature is sizable, but
significantly smaller than TOO � 800 K [10].
Since the screened Coulomb repulsion U is hard to

calculate, it is crucial to identify the range of plausible
values of U and to estimate how TKK varies in this range.
For the experimental structure, U� 5 eV yields a tiny gap
in the DMFT spectral function and U� 6 eV a semicon-
ducting gap of 1.3 eV, while KCuF3 is a good insulator
[26]. It seems therefore unrealistic that U is smaller than
7 eV. It could, however, be larger. In Fig. 3, we show the
results forU ¼ 9 eV. We find a reduction to TKK � 300 K,
reflecting the decrease in the superexchange coupling.
Thus, we can conclude that, within single-site DMFT,
TKK � 300–350 K, sizable but at least a factor two smaller
than TOO � 800 K.
The ordering temperature TKK might be even overesti-

mated by the single-site DMFT approximation, as is com-
mon for mean-field theories [27]. To investigate the effects
of short-range correlations, we therefore perform two-site
CDMFT calculations for the cubic structure. We use a
supercell containing eight formula units, with axis a0 ¼
2x, b0 ¼ 2y, c0 ¼ 2z, and a two-site cluster which aver-

ages the cubic directions, i.e., imposing �i;i0 ¼ �i;i�x ¼
�i;i�y ¼ �i;i�z, for nearest neighbors i and i0 in the super-
cell. For U ¼ 7 eV, we find that the polarization starts to
increase around 300–350 K, somewhat below the single-
site transition.
To compare these results with superexchange theory, we

calculate the orbital-superexchange coupling assuming
that no long-range magnetic order is present [23]. Two
representative couplings are

TABLE I. Hopping integrals ti;i
0

j;j0 in the crystal-field basis (j, j
0)

from a site i of type 1 to a neighboring site i0 of type 2 in
direction lxþ ny þmz. JSE are the magnetic superexchange
couplings for the experimental structure and some representative
orbital-superexchange couplings for the ideal cubic structure
[23]. The crystal-field states are j1i ¼ cos�j3l2 � 1i þ
sin�js2 � z2i and j2i ¼ � sin�j3l2 � 1i þ cos�js2 � z2i where
s (l) is the direction of the short (long) bond (s ¼ x, l ¼ y for a
site 1). The crystal-field splitting and cos� are given for all
structures. All energies are in meV.

Experimental structure R [13]

lmn ti;i
0

1;1 ti;i
0

1;2 ti;i
0

2;1 ti;i
0

2;2 Ji;i
0

SE(th.) Ji;i
0

SE(exp.)

001 �83 �161 �161 �343 57 53 [24,25]

010 98 �352 �17 59 �4 �0:4 [25]

100 98 �17 �352 59 �4 �0:4 [25]

Ideal cubic structure I0

lmn ti;i
0

1;1 ti;i
0

1;2 ti;i
0

2;1 ti;i
0

2;2 Jzzi;i
0

SE (th.) Jþ�i;i0
SE (th.)

001 �93 �163 �163 �282 �162 0

010 188 �327 �1 0 �40 60

100 188 �1 �327 0 �40 60

Crystal-field splittings �2;1 and cos�

R R0:4 R0 I4:4 I0:4 I0:2 I0:1 I0:05 I0

�2;1 1050 216 180 845 89 46 22 11 0

cos� 0.99 0.950 0.866 0.97 0.97 0.97 0.97 0.97 0.97
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FIG. 3 (color online). Orbital polarization p as a function of
temperature calculated with LDAþ DMFT (R, circles, tri-
angles). R: U ¼ 7 eV, experimental structure. Circles: U ¼
7 eV, idealized structures R� and I� (see Fig. 1) with decreasing
crystal-field. Triangles: U ¼ 9 eV, I0 only. Squares: cluster
DMFT for the experimental structure and U ¼ 7 eV.
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Jzzi;i
0

SE ¼ X
�;�0

ð�1Þ�þ�0
2jti;i0�;�0 j2
Uþ J

2Uþ 6J

U� 3J
;

Jþ�i;i0
SE ¼ X

��0

�
2ti;i

0
�� t

i;i0
�0�0

U� J

2U

U� 3J
þ 2ti;i

0
�;�0 t

i;i0
�0;�

U� J

2J

Uþ J

�
;

where we adopt the pseudospin description of the orbital
states [1], with � ¼ 1=2 corresponding to j3z2 � 1i and
� ¼ �1=2 to jx2 � y2i. These couplings, shown in Table I,
are very anisotropic, with the largest about 3 times the
magnetic exchange coupling along z. Again, this suggests
that TKK should be larger than TN ¼ 38 K, but certainly
smaller than TOO � 800 K.

All this indicates that in KCuF3, the driving mechanism
for orbital ordering is not pure superexchange. Further
support comes from an accurate reanalysis of LDAþU
results. To do this, we first perform LDAþU calculations
for the cubic and distorted structure [7], and obtain results
in agreement with previous literature [6,22]. For the un-
distorted KCuF3, we find a fully orbitally polarized solu-
tion, and the occupation matrix only slightly differs from
that obtained for the experimental structure. This shows
that the energy gain due to the distortions, �E� 180 meV
per formula unit, cannot be ascribed to the orbital polar-
ization itself, but rather is an estimate of the electron-
phonon coupling, enhanced by self-interaction correction
[7]. In order to estimate the energy gain due to orbital
polarization, we performed several LDAþU calculations
for the cubic structure with different (fixed) occupation
matrices. We find that the energy gain [1] is �90 meV,
only half of �E.

In conclusion, we have calculated the Kugel-Khomskii
transition temperature for KCuF3 and find a remarkably
large TKK � 350 K. Nevertheless, the superexchange
mechanism is not sufficiently strong to explain TOO �
800 K: at such a transition both superexchange and elec-
tron phonon coupling are of comparable importance. The
assignment TOO � 800 K [10] is however based on the
temperature dependence of the orbital peak intensity sig-
nals measured by resonant x-ray scattering [10]. A direct
measurement of the evolution of the distortions with tem-
perature would be highly desirable. Should orbital order
persist till melting, the electron-phonon coupling contribu-
tion would be the dominant mechanism.

We acknowledge discussions with and helpful com-
ments from D. I. Khomskii and P. Ghigna. The calculations
were performed on the Jülich BlueGene under account
JIFF2200.
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