21,919 research outputs found
Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region
The Particle-in-Cell (PIC) method was used to study two different ion
thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency
Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in
the discharge chamber due to the different magnetic field configurations.
Special attention was paid to the simulation of plasma particle fluxes on the
thrusters channel surfaces. In both cases, PIC proved itself as a powerful
tool, delivering important insight into the basic physics of the different
thruster concepts. The simulations demonstrated that the new HEMP thruster
concept allows for a high thermal efficiency due to both minimal energy
dissipation and high acceleration efficiency. In the HEMP thruster the plasma
contact to the wall is limited only to very small areas of the magnetic field
cusps, which results in much smaller ion energy flux to the thruster channel
surface as compared to SPT. The erosion yields for dielectric discharge channel
walls of SPT and HEMP thrusters were calculated with the binary collision code
SDTrimSP. For SPT, an erosion rate on the level of 1 mm of sputtered material
per hour was observed. For HEMP, thruster simulations have shown that there is
no erosion inside the dielectric discharge channel.Comment: 14 pages, 11 figures This work was presented at 21st International
Conference on Numerical Simulation of Plasmas (ICNSP'09
Extended Gibbs ensembles with flow
A statistical treatment of finite unbound systems in the presence of
collective motions is presented and applied to a classical Lennard-Jones
Hamiltonian, numerically simulated through molecular dynamics. In the ideal gas
limit, the flow dynamics can be exactly re-casted into effective time-dependent
Lagrange parameters acting on a standard Gibbs ensemble with an extra total
energy conservation constraint. Using this same ansatz for the low density
freeze-out configurations of an interacting expanding system, we show that the
presence of flow can have a sizeable effect on the microstate distribution.Comment: 7 pages, 4 figure
High-Accuracy Calculations of the Critical Exponents of Dyson's Hierarchical Model
We calculate the critical exponent gamma of Dyson's hierarchical model by
direct fits of the zero momentum two-point function, calculated with an Ising
and a Landau-Ginzburg measure, and by linearization about the Koch-Wittwer
fixed point. We find gamma= 1.299140730159 plus or minus 10^(-12). We extract
three types of subleading corrections (in other words, a parametrization of the
way the two-point function depends on the cutoff) from the fits and check the
value of the first subleading exponent from the linearized procedure. We
suggest that all the non-universal quantities entering the subleading
corrections can be calculated systematically from the non-linear contributions
about the fixed point and that this procedure would provide an alternative way
to introduce the bare parameters in a field theory model.Comment: 15 pages, 9 figures, uses revte
Entanglement in the dispersive interaction of trapped ions with a quantized field
The mode-mode entanglement between trapped ions and cavity fields is
investigated in the dispersive regime. We show how a simple initial preparation
of Gaussian coherent states and a postselection may be used to generate
motional non-local mesoscopic states (NLMS) involving ions in different traps.
We also present a study of the entanglement induced by dynamical Stark-shifts
considering a cluster of N-trapped ions. In this case, all entanglement is due
to the dependence of the Stark-shifts on the ions' state of motion manifested
as a cross-Kerr interaction between each ion and the field.Comment: 10 pages, 5 figures, corrected typo
A Two-Parameter Recursion Formula For Scalar Field Theory
We present a two-parameter family of recursion formulas for scalar field
theory. The first parameter is the dimension . The second parameter
() allows one to continuously extrapolate between Wilson's approximate
recursion formula and the recursion formula of Dyson's hierarchical model. We
show numerically that at fixed , the critical exponent depends
continuously on . We suggest the use of the independence as a
guide to construct improved recursion formulas.Comment: 7 pages, uses Revtex, one Postcript figur
Strangeness counting in high energy collisions
The estimates of overall strange quark production in high energy e+e-, pp and
ppbar collisions by using the statistical-thermal model of hadronisation are
presented and compared with previous works. The parametrization of strangeness
suppression within the model is discussed. Interesting regularities emerge in
the strange/non-strange produced quark ratio which turns out to be fairly
constant in elementary collisions while it is twice as large in SPS heavy ion
collision.Comment: talk given at Strangeness in Quark Matter 98, submitted to J. Phys.
Chemical Evolution in the Carina Dwarf Spheroidal
We present metallicities for 487 red giants in the Carina dwarf spheroidal
(dSph) galaxy that were obtained from FLAMES low-resolution Ca triplet (CaT)
spectroscopy. We find a mean [Fe/H] of -1.91 dex with an intrinsic dispersion
of 0.25 dex, whereas the full spread in metallicities is at least one dex. The
analysis of the radial distribution of metallicities reveals that an excess of
metal poor stars resides in a region of larger axis distances. These results
can constrain evolutionary models and are discussed in the context of chemical
evolution in the Carina dSph.Comment: 3 pages, 2 figures, to be published in the proceedings of the
ESO/Arcetri-workshop on "Chemical Abundances and Mixing in Stars", 13.-17.
Sep. 2004, Castiglione della Pescaia, Italy, L. Pasquini, S. Randich (eds.
A Guide to Precision Calculations in Dyson's Hierarchical Scalar Field Theory
The goal of this article is to provide a practical method to calculate, in a
scalar theory, accurate numerical values of the renormalized quantities which
could be used to test any kind of approximate calculation. We use finite
truncations of the Fourier transform of the recursion formula for Dyson's
hierarchical model in the symmetric phase to perform high-precision
calculations of the unsubtracted Green's functions at zero momentum in
dimension 3, 4, and 5. We use the well-known correspondence between statistical
mechanics and field theory in which the large cut-off limit is obtained by
letting beta reach a critical value beta_c (with up to 16 significant digits in
our actual calculations). We show that the round-off errors on the magnetic
susceptibility grow like (beta_c -beta)^{-1} near criticality. We show that the
systematic errors (finite truncations and volume) can be controlled with an
exponential precision and reduced to a level lower than the numerical errors.
We justify the use of the truncation for calculations of the high-temperature
expansion. We calculate the dimensionless renormalized coupling constant
corresponding to the 4-point function and show that when beta -> beta_c, this
quantity tends to a fixed value which can be determined accurately when D=3
(hyperscaling holds), and goes to zero like (Ln(beta_c -beta))^{-1} when D=4.Comment: Uses revtex with psfig, 31 pages including 15 figure
Optical absorption of non-interacting tight-binding electrons in a Peierls-distorted chain at half band-filling
In this first of three articles on the optical absorption of electrons in
half-filled Peierls-distorted chains we present analytical results for
non-interacting tight-binding electrons. We carefully derive explicit
expressions for the current operator, the dipole transition matrix elements,
and the optical absorption for electrons with a cosine dispersion relation of
band width and dimerization parameter . New correction
(``''-)terms to the current operator are identified. A broad band-to-band
transition is found in the frequency range whose shape
is determined by the joint density of states for the upper and lower Peierls
subbands and the strong momentum dependence of the transition matrix elements.Comment: 17 pages REVTEX 3.0, 2 postscript figures; hardcopy versions before
May 96 are obsolete; accepted for publication in The Philosophical Magazine
Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b
Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus) immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi) and extracellular fibrinogen-binding protein (Efb) bind C3/C3b simultaneously with plasminogen. Bound plasminogen is converted by bacterial activator staphylokinase or by host-specific urokinase-type plasminogen activator to plasmin, which in turn leads to degradation of complement C3 and C3b. Efb and to a lesser extend Sbi enhance plasmin cleavage of C3/C3b, an effect which is explained by a conformational change in C3/C3b induced by Sbi and Efb. Furthermore, bound plasmin also degrades C3a, which exerts anaphylatoxic and antimicrobial activities. Thus, S. aureus Sbi and Efb comprise platforms to recruit plasmin(ogen) together with C3 and its activation product C3b for efficient degradation of these complement components in the local microbial environment and to protect S. aureus from host innate immune reactions
- …