The goal of this article is to provide a practical method to calculate, in a
scalar theory, accurate numerical values of the renormalized quantities which
could be used to test any kind of approximate calculation. We use finite
truncations of the Fourier transform of the recursion formula for Dyson's
hierarchical model in the symmetric phase to perform high-precision
calculations of the unsubtracted Green's functions at zero momentum in
dimension 3, 4, and 5. We use the well-known correspondence between statistical
mechanics and field theory in which the large cut-off limit is obtained by
letting beta reach a critical value beta_c (with up to 16 significant digits in
our actual calculations). We show that the round-off errors on the magnetic
susceptibility grow like (beta_c -beta)^{-1} near criticality. We show that the
systematic errors (finite truncations and volume) can be controlled with an
exponential precision and reduced to a level lower than the numerical errors.
We justify the use of the truncation for calculations of the high-temperature
expansion. We calculate the dimensionless renormalized coupling constant
corresponding to the 4-point function and show that when beta -> beta_c, this
quantity tends to a fixed value which can be determined accurately when D=3
(hyperscaling holds), and goes to zero like (Ln(beta_c -beta))^{-1} when D=4.Comment: Uses revtex with psfig, 31 pages including 15 figure