2,181 research outputs found

    Nonlinear response of the vacuum Rabi resonance

    Full text link
    On the level of single atoms and photons, the coupling between atoms and the electromagnetic field is typically very weak. By employing a cavity to confine the field, the strength of this interaction can be increased many orders of magnitude to a point where it dominates over any dissipative process. This strong-coupling regime of cavity quantum electrodynamics has been reached for real atoms in optical cavities, and for artificial atoms in circuit QED and quantum-dot systems. A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity - an effect known as vacuum Rabi splitting. The circuit QED architecture is ideally suited for going beyond this linear response effect. Here, we show that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet, and the appearance of additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings ladder. These constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom.Comment: 6 pages, 4 figures. Supplementary Material and Supplementary Movies are available at http://www.eng.yale.edu/rslab/publications.htm

    Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities

    Get PDF
    BACKGROUND: Coxiella burnetii is the etiological agent of Q fever found worldwide. The microorganism has like other Gram-negative bacteria a lipopolysaccharide (LPS, endotoxin) in its outer membrane, which is important for the pathogenicity of the bacteria. In order to understand the biological activity of LPS, a detailed physico-chemical analysis of LPS is of utmost importace. RESULTS: The lipid A moiety of LPS is tetraacylated and has longer (C-16) acyl chains than most other lipid A from enterobacterial strains. The two ester-linked 3-OH fatty acids found in the latter are lacking. The acyl chains of the C. burnetii endotoxins exhibit a broad melting range between 5 and 25°C for LPS and 10 and 40°C for lipid A. The lipid A moiety has a cubic inverted aggregate structure, and the inclination angle of the D-glucosamine disaccharide backbone plane of the lipid A part with respect to the membrane normal is around 40°. Furthermore, the endotoxins readily intercalate into phospholipid liposomes mediated by the lipopolysaccharide-binding protein (LBP). The endotoxin-induced tumor necrosis factor ι (TNFι) production in human mononuclear cells is one order of magnitude lower than that found for endotoxins from enterobacterial strains, whereas the same activity as in the latter compounds is found in the clotting reaction of the Limulus amebocyte lysate assay. CONCLUSIONS: Despite a considerably different chemical primary structure of the C. burnetii lipid A in comparison with enterobacterial lipid A, the data can be well understood by applying the previously presented conformational concept of endotoxicity, a conical shape of the lipid A moiety of LPS and a sufficiently high inclination of the sugar backbone plane with respect to the membrane plane. Importantly, the role of the acyl chain fluidity in modulating endotoxicity now becomes more evident

    Observation of squeezed light from one atom excited with two photons

    Full text link
    Single quantum emitters like atoms are well-known as non-classical light sources which can produce photons one by one at given times, with reduced intensity noise. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability for a single atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or phase fluctuations. It has long been foreseen, though, that such squeezing would be "at least an order of magnitude more difficult" to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, several orders of magnitude larger than for usual macroscopic media. This produces observable quadrature squeezing with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages, 2 figures). Revised versio

    Passive water control at the surface of a superhydrophobic lichen

    Get PDF
    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron microscopy (cryo-SEM) techniques to determine the structure of podetia and to visualise their interaction with water droplets. SEM and optical microscopy studies revealed that the surface of the podetia was constructed in a three-level structural hierarchy. By cryo-SEM of water-glycerol droplets placed on the upper part of the podetium, pinning of the droplet to specific, hydrophilic spots (pycnidia/apothecia) was observed. The results suggest a mechanism for water uptake, which is highly sophisticated, using surface wettability to generate a passive response to different types of precipitation in a manner similar to the Namib Desert beetle. This mechanism is likely to be found in other organisms as it offers passive but selective water control

    Four Phosphates at One Blow: Access to Pentaphosphorylated Magic Spot Nucleotides and Their Analysis by Capillary Electrophoresis

    Get PDF
    The complex phosphorylation pattern of natural and modified pentaphosphorylated magic spot nucleotides is generated in a highly efficient way. A cyclic pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce four phosphates on nucleosides regioselectively in a one-flask key transformation. The obtained magic spot nucleotides are used to develop a capillary electrophoresis UV detection method, enabling nucleotide assignment in complex bacterial extracts

    Review of biorthogonal coupled cluster representations for electronic excitation

    Full text link
    Single reference coupled-cluster (CC) methods for electronic excitation are based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in terms of excited CC states, also referred to as correlated excited (CE) states, and an associated set of states biorthogonal to the CE states, the latter being essentially configuration interaction (CI) configurations. The bCC representation generates a non-hermitian secular matrix, the eigenvalues representing excitation energies, while the corresponding spectral intensities are to be derived from both the left and right eigenvectors. Using the perspective of the bCC representation, a systematic and comprehensive analysis of the excited-state CC methods is given, extending and generalizing previous such studies. Here, the essential topics are the truncation error characteristics and the separability properties, the latter being crucial for designing size-consistent approximation schemes. Based on the general order relations for the bCC secular matrix and the (left and right) eigenvector matrices, formulas for the perturbation-theoretical (PT) order of the truncation errors (TEO) are derived for energies, transition moments, and property matrix elements of arbitrary excitation classes and truncation levels. In the analysis of the separability properties of the transition moments, the decisive role of the so-called dual ground state is revealed. Due to the use of CE states the bCC approach can be compared to so-called intermediate state representation (ISR) methods based exclusively on suitably orthonormalized CE states. As the present analysis shows, the bCC approach has decisive advantages over the conventional CI treatment, but also distinctly weaker TEO and separability properties in comparison with a full (and hermitian) ISR method

    Damagnetization cooling of a gas

    Full text link
    We demonstrate demagnetization cooling of a gas of ultracold 52^{52}Cr atoms. Demagnetization is driven by inelastic dipolar collisions which couple the motional degrees of freedom to the spin degree. By that kinetic energy is converted into magnetic work with a consequent temperature reduction of the gas. Optical pumping is used to magnetize the system and drive continuous demagnetization cooling. Applying this technique, we can increase the phase space density of our sample by one order of magnitude, with nearly no atom loss. This method can be in principle extended to every dipolar system and could be used to achieve quantum degeneracy via optical means.Comment: 10 pages, 5 figure

    Transit Photometry as an Exoplanet Discovery Method

    Full text link
    Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method's strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems, and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.Comment: Review chapte

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Climbing the Jaynes-Cummings Ladder and Observing its Sqrt(n) Nonlinearity in a Cavity QED System

    Full text link
    The already very active field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has recently gained additional momentum by the advent of experiments with semiconducting and superconducting systems. In these solid state implementations, novel quantum optics experiments are enabled by the possibility to engineer many of the characteristic parameters at will. In cavity QED, the observation of the vacuum Rabi mode splitting is a hallmark experiment aimed at probing the nature of matter-light interaction on the level of a single quantum. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous, long sought for spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED setup, in which ultra strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high quality on-chip microwave cavity.Comment: ArXiv version of manuscript published in Nature in July 2008, 5 pages, 5 figures, hi-res version at http://www.finkjohannes.com/SqrtNArxivPreprint.pd
    • …
    corecore