19,956 research outputs found

    Multispectral scanner optical system

    Get PDF
    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam

    Phonon-affected steady-state transport through molecular quantum dots

    Full text link
    We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.Comment: 11 pages, 7 figures, FQMT11 Proceeding

    Chemical Evolution in the Carina Dwarf Spheroidal

    Full text link
    We present metallicities for 487 red giants in the Carina dwarf spheroidal (dSph) galaxy that were obtained from FLAMES low-resolution Ca triplet (CaT) spectroscopy. We find a mean [Fe/H] of -1.91 dex with an intrinsic dispersion of 0.25 dex, whereas the full spread in metallicities is at least one dex. The analysis of the radial distribution of metallicities reveals that an excess of metal poor stars resides in a region of larger axis distances. These results can constrain evolutionary models and are discussed in the context of chemical evolution in the Carina dSph.Comment: 3 pages, 2 figures, to be published in the proceedings of the ESO/Arcetri-workshop on "Chemical Abundances and Mixing in Stars", 13.-17. Sep. 2004, Castiglione della Pescaia, Italy, L. Pasquini, S. Randich (eds.

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure

    Permits vs. Offsets Under Investment Uncertainty

    Get PDF
    A global crediting mechanism would enable developing countries without binding emissions reduction targets to participate in the international carbon market. Linking the framework on Reducing Emissions from Deforestation and Forest Degradation (REDD) as an offset program to major cap-and-trade programs is a particularly promising approach to increase both climate finance and cost-efficiency. However, the coexistence of permits and offsets also creates a classic case of interaction effects. In this paper, we explore how the availability of multiple compliance instruments affects energy investment incentives. Alternative trading and linkage schemes are compared using a real options model of firm-level investment decisions under stochastic prices and the ability to delay investments. We first isolate the critical design factors that drive private investments in the energy sector. We then identify policy regimes that balance the different concerns in the polarized debate for and against the inclusion of forest carbon offsets

    Solving Four Dimensional Field Theories with the Dirichlet Fivebrane

    Full text link
    The realization of N=2{\cal N}=2 four dimensional super Yang-Mills theories in terms of a single Dirichlet fivebrane in type IIB string theory is considered. A classical brane computation reproduces the full quantum low energy effective action. This result has a simple explanation in terms of mirror symmetry.Comment: Final version to appear in Phys. Rev.

    Cores and Cusps in the Dwarf Spheroidals

    Full text link
    We consider the problem of determining the structure of the dark halo of nearby dwarf spheroidal galaxies (dSphs) from the spherical Jeans equations. Whether the dark halos are cusped or cored at the centre is an important strategic problem in modern astronomy. The observational data comprise the line-of-sight velocity dispersion of a luminous tracer population. We show that when such data are analysed to find the dark matter density with the spherical Poisson and Jeans equations, then the generic solution is a dark halo density that is cusped like an isothermal. Although milder cusps (like the Navarro-Frenk-White 1/r cusp and even cores are possible, they are not generic. Such solutions exist only if the anisotropy parameter beta and the logarithmic slope of the stellar density gamma satisfy the constraint gamma = 2 x beta at the centre or if the radial velocity dispersion falls to zero at the centre. This surprisingly strong statement is really a consequence of the assumption of spherical symmetry, and the consequent coordinate singularity at the origin. So, for example, a dSph with an exponential light profile can exist in Navarro-Frenk- White halo and have a flat velocity dispersion, but anisotropy in general drives the dark halo solution to an isothermal cusp. The identified cusp or core is therefore a consequence of the assumptions (particularly of spherical symmetry and isotropy), and not the data.Comment: MNRAS, in pres

    A study of rotating globular clusters - the case of the old, metal-poor globular cluster NGC 4372

    Full text link
    Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. Using this kinematic data set we build a velocity dispersion profile and a systemic rotation curve. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a MCMC fitting algorithm. From this we derive the cluster's half-light radius and ellipticity as r_h=3.4'+/-0.04' and e=0.08+/-0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km/s) for its metallicity. This, however, puts it in line with two other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M_Sun/L_Sun, representative of an old, purely stellar population.Comment: Accepted for publication in A&A, 12 pages, 14 figures, 2 table

    Precision of Quantization of the Hall Conductivity in a Sample of Finite Size: Power Law

    Full text link
    A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) regime is carried out. The problem of precision of quantization is analyzed for samples of finite size. It is demonstrated that the precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing a dependence of this kind is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the chaotic potential and the cyclotron energy. The results obtained are compared with the magnetotransport measurements in mesoscopic samples.Comment: 5 pages, 4 figure

    Further Evidence for a Merger Origin for the Thick Disk: Galactic Stars Along Lines-of-sight to Dwarf Spheroidal Galaxies

    Full text link
    The history of the Milky Way Galaxy is written in the properties of its stellar populations. Here we analyse stars observed as part of surveys of local dwarf spheroidal galaxies, but which from their kinematics are highly probable to be non-members. The selection function -- designed to target metal-poor giants in the dwarf galaxies, at distances of ~100kpc -- includes F-M dwarfs in the Milky Way, at distances of up to several kpc. Thestars whose motions are analysed here lie in the cardinal directions of Galactic longitude l ~ 270 and l ~ 90, where the radial velocity is sensitive to the orbital rotational velocity. We demonstrate that the faint F/G stars contain a significant population with V_phi ~ 100km/s, similar to that found by a targeted, but limited in areal coverage, survey of thick-disk/halo stars by Gilmore, Wyse & Norris (2002). This value of mean orbital rotation does not match either the canonical thick disk or the stellar halo. We argue that this population, detected at both l ~ 270 and l ~ 90, has the expected properties of `satellite debris' in the thick-disk/halo interface, which we interpret as remnants of the merger that heated a pre-existing thin disk to form the thick disk.Comment: Accepted, Astrophysical Journal Letter
    • …
    corecore