679 research outputs found
Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition
The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the
Higher Education Commission of Pakistan and managerially supported from the OAD
Supersymmetric codimension-two branes in six-dimensional gauged supergravity
We consider the six-dimensional Salam-Sezgin supergravity in the presence of
codimension-2 branes. In the case that the branes carry only tension, we
provide a way to supersymmetrise them by adding appropriate localised
Fayet-Iliopoulos terms and localised corrections to the Chern-Simons term and
modifying accordingly the fermionic supersymmetry transformations. The
resulting brane action has N=1 supersymmetry (SUSY). We find the axisymmetric
vacua of the system and show that one has unwarped background solutions with
"football"-shaped extra dimensions which always respect N=1 SUSY for any value
of the equal brane tensions, in contrast with the non-supersymmetric brane
action background. Finally, we generically find multiple zero modes of the
gravitino in this background and discuss how one could obtain a single chiral
zero mode present in the low energy spectrum.Comment: 21 pages, no figures, A sign error in the gauge potential at the
lower brane corrected and its consequent effect discusse
Effective Hamiltonian and unitarity of the S matrix
The properties of open quantum systems are described well by an effective
Hamiltonian that consists of two parts: the Hamiltonian of the
closed system with discrete eigenstates and the coupling matrix between
discrete states and continuum. The eigenvalues of determine the
poles of the matrix. The coupling matrix elements
between the eigenstates of and the continuum may be very
different from the coupling matrix elements between the eigenstates
of and the continuum. Due to the unitarity of the matrix, the
\TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the
assumptions of some approaches to reactions in the overlapping regime. Explicit
expressions for the wave functions of the resonance states and for their phases
in the neighbourhood of, respectively, avoided level crossings in the complex
plane and double poles of the matrix are given.Comment: 17 pages, 7 figure
On the Geodesic Nature of Wegner's Flow
Wegner's method of flow equations offers a useful tool for diagonalizing a
given Hamiltonian and is widely used in various branches of quantum physics.
Here, generalizing this method, a condition is derived, under which the
corresponding flow of a quantum state becomes geodesic in a submanifold of the
projective Hilbert space, independently of specific initial conditions. This
implies the geometric optimality of the present method as an algorithm of
generating stationary states. The result is illustrated by analyzing some
physical examples.Comment: 8 pages, no figures. The version published in Foundations of Physic
Nonquasiparticle states in half-metallic ferromagnets
Anomalous magnetic and electronic properties of the half-metallic
ferromagnets (HMF) have been discussed. The general conception of the HMF
electronic structure which take into account the most important correlation
effects from electron-magnon interactions, in particular, the spin-polaron
effects, is presented. Special attention is paid to the so called
non-quasiparticle (NQP) or incoherent states which are present in the gap near
the Fermi level and can give considerable contributions to thermodynamic and
transport properties. Prospects of experimental observation of the NQP states
in core-level spectroscopy is discussed. Special features of transport
properties of the HMF which are connected with the absence of one-magnon
spin-flip scattering processes are investigated. The temperature and magnetic
field dependences of resistivity in various regimes are calculated. It is shown
that the NQP states can give a dominate contribution to the temperature
dependence of the impurity-induced resistivity and in the tunnel junction
conductivity. First principle calculations of the NQP-states for the prototype
half-metallic material NiMnSb within the local-density approximation plus
dynamical mean field theory (LDA+DMFT) are presented.Comment: 27 pages, 9 figures, Proceedings of Berlin/Wandlitz workshop 2004;
Local-Moment Ferromagnets. Unique Properties for Moder Applications, ed. M.
Donath, W.Nolting, Springer, Berlin, 200
Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities
We investigate de Sitter solutions in non-local gravity as well as in
non-local gravity with Lagrange constraint multiplier. We examine a condition
to avoid a ghost and discuss a screening scenario for a cosmological constant
in de Sitter solutions. Furthermore, we explicitly demonstrate that three types
of the finite-time future singularities can occur in non-local gravity and
explore their properties. In addition, we evaluate the effective equation of
state for the universe and show that the late-time accelerating universe may be
effectively the quintessence, cosmological constant or phantom-like phases. In
particular, it is found that there is a case in which a crossing of the phantom
divide from the non-phantom (quintessence) phase to the phantom one can be
realized when a finite-time future singularity occurs. Moreover, it is
demonstrated that the addition of an term can cure the finite-time future
singularities in non-local gravity. It is also suggested that in the framework
of non-local gravity, adding an term leads to possible unification of the
early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General
Relativity and Gravitatio
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
Rescattering and chiral dynamics in B\to \rho\pi decay
We examine the role of B^0(\bar B^0) \to \sigma \pi^0 \to \pi^+\pi^- \pi^0
decay in the Dalitz plot analysis of B^0 (\bar B^0) \to \rho\pi \to
\pi^+\pi^-\pi^0 decays, employed to extract the CKM parameter \alpha. The
\sigma \pi channel is significant because it can break the relationship between
the penguin contributions in B\to\rho^0\pi^0, B\to\rho^+\pi^-, and
B\to\rho^-\pi^+ decays consequent to an assumption of isospin symmetry. Its
presence thus mimics the effect of isospin violation. The \sigma\pi^0 state is
of definite CP, however; we demonstrate that the B\to\rho\pi analysis can be
generalized to include this channel without difficulty. The \sigma or
f_0(400-1200) ``meson'' is a broad I=J=0 enhancement driven by strong \pi\pi
rescattering; a suitable scalar form factor is constrained by the chiral
dynamics of low-energy hadron-hadron interactions - it is rather different from
the relativistic Breit-Wigner form adopted in earlier B\to\sigma\pi and
D\to\sigma\pi analyses. We show that the use of this scalar form factor leads
to an improved theoretical understanding of the measured ratio Br(\bar B^0 \to
\rho^\mp \pi^\pm) / Br(B^-\to \rho^0 \pi^-).Comment: 26 pages, 8 figs, published version. typos fixed, minor change
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
- …