84 research outputs found

    Fully supersymmetric CP violations in the kaon system

    Get PDF
    We show that, on the contrary to the usual claims, fully supersymmetric CP violations in the kaon system are possible through the gluino mediated flavor changing interactions. Both ϵK\epsilon_K and Re(ϵ/ϵK){\rm Re} (\epsilon' / \epsilon_K) can be accommodated for relatively large tanβ\tan\beta without any fine tunings or contradictions to the FCNC and EDM constraints.Comment: Contribution to the Proceedings of ICHEP2000, Osaka, 200

    Exploring flavor structure of supersymmetry breaking from rare B decays and unitarity triangle

    Full text link
    We study effects of supersymmetric particles in various rare B decay processes as well as in the unitarity triangle analysis. We consider three different supersymmetric models, the minimal supergravity, SU(5) SUSY GUT with right-handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry. In the SU(5) SUSY GUT with right-handed neutrinos, we consider two cases of the mass matrix of the right-handed neutrinos. We calculate direct and mixing-induced CP asymmetries in the b to s gamma decay and CP asymmetry in B_d to phi K_S as well as the B_s--anti-B_s mixing amplitude for the unitarity triangle analysis in these models. We show that large deviations are possible for the SU(5) SUSY GUT and the U(2) model. The pattern and correlations of deviations from the standard model will be useful to discriminate the different SUSY models in future B experiments.Comment: revtex4, 36 pages, 10 figure

    SUSY breaking mediation mechanisms and (g-2)_\mu, B -> X_s \gamma, B -> X_{s} l^+ l^- and B_s -> \mu^+ \mu^-

    Full text link
    We show that there are qualitative differences in correlations among (g2)μ(g-2)_{\mu}, BXsγB\to X_s \gamma, BXsl+lB \to X_{s} l^+ l^- and Bsμ+μB_s \to \mu^+ \mu^- in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), gaugino mediation (g~\tilde{g}MSB), weakly and strongly interacting string theories, and DD brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and BXsγB\to X_s \gamma branching ratio, we find all the scenarios can accommodate the aμ(g2)μ/2a_\mu \equiv (g-2)_\mu /2 in the range of (a few tens)×1010\times 10^{-10}, and predict that the branching ratio for BXsl+lB\to X_s l^+ l^- can differ from the standard model (SM) prediction by ±20\pm 20 % but no more. On the other hand, the Bsμ+μB_s \to \mu^+ \mu^- is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (mAm_A and mt~1m_{\tilde{t}_1}), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g~\tilde{g}MSB and the noscale scenarios, one finds that B(Bsμ+μ)2×108B(B_s \to \mu^+ \mu^-) \lesssim 2 \times 10^{-8}, which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay.Comment: 40 pages, 21 figures (to appear in JHEP

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity η<1.0|\eta|<1.0 and at forward rapidity 2.1<η<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur

    The Strength–Grain Size Relationship in Ultrafine-Grained Metals

    Full text link

    Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target

    Get PDF
    The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07) × 1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill

    Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment

    Get PDF
    In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved

    The Physics of the B Factories

    Get PDF
    corecore