16 research outputs found

    Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study

    Get PDF
    Spinal cord injury (SCI) above mid-thoracic levels leads to autonomic dysfunction affecting both the cardiovascular system and thermoregulation. The renin-angiotensin system (RAS) which is a potent regulator of blood pressure, including its novel beneficial arm with the receptor Mas could be an interesting target in post-SCI hemodynamics. To test the hypothesis that hemodynamics, activity and diurnal patterns of those are more affected in the Mas deficient mice post-SCI we used a mouse model of SCI with complete transection of spinal cord at thoracic level 4 (T4-Tx) and performed telemetric monitoring of blood pressure (BP) and heart rate (HR). Our data revealed that hypothermia deteriorated physiological BP and HR control. Preserving normothermia by keeping mice at 30°C prevented severe hypotension and bradycardia post-SCI. Moreover, it facilitated rapid return of diurnal regulation of BP, HR and activity in wild type (WT) mice. In contrast, although Mas deficient mice had comparable reacquisition of diurnal HR rhythm, they showed delayed recovery of diurnal rhythmicity in BP and significantly lower nocturnal activity. Exposing mice with T4-Tx (kept in temperature-controlled cages) to 23°C room temperature for one hour at different time-points post-SCI, demonstrated their inability to maintain core body temperature, Mas deficient mice being significantly more impaired than WT littermates. We conclude that Mas deficient mice were more resistant to acute hypotension, delayed nocturnal recovery, lower activity and more severely impaired thermoregulation. The ambient temperature had significant effect on hemodynamics and, thus it should be taken into account when assessing cardiovascular parameters post-SCI in mice

    Molecular functions of the ubiquitin domain protein Herp in Synoviolin mediated endoplasmic reticulum associated protein degradation (ERAD)

    Get PDF
    Die Akkumulation fehlerhafter Proteine im Endoplasmatischen Retikulum (ER) induziert den „unfolded protein response“ (UPR) - Signalweg zur Überwindung dieser zellulĂ€ren Stress-Situation. Ein in SĂ€ugern stark UPR-induziertes Gen kodiert fĂŒr das Ubiquitin-DomĂ€ne-Protein Herp. Herp interagiert mit der E3-Ligase Synoviolin, einer zentralen Komponente von Multiproteinkomplexen, welche die ER assoziierte Protein-Degradation (ERAD) vermitteln. AbhĂ€ngig von seiner Ubiquitin-Ă€hnlichen (‘UBL’) DomĂ€ne wird Herp fĂŒr den effizienten Abbau von Synoviolin-Substraten benötigt. Der zugrundeliegende molekulare Mechanismus dieser Funktion von Herp ist kaum bekannt. In der vorliegenden Studie wurde gezeigt, dass Herp kontinuierlich an Synoviolin-basierten Komplexen umgesetzt wird, aber kein Substrat ist. Da sowohl Depletion als auch Stabilisierung von Herp zum verminderten Abbau von Synoviolin-Substraten fĂŒhrt, lĂ€sst sich schlussfolgern, dass der kontinuierliche Umsatz von Herp entscheidend ist fĂŒr ERAD. Weiterhin regulierte Herp die Zusammensetzung Synoviolin-basierter Komplexe. Das deubiquitinierende Enzym Usp7 ist ĂŒber seine Bindung an Herp mit Synoviolin assoziiert. Usp7 beeinflusste aber nicht die StabilitĂ€t von Herp oder ERAD-Substraten. ZusĂ€tzlich verstĂ€rkte Herp die Interaktion zwischen dem CUE-DomĂ€ne-Protein AUP1 und Synoviolin. In AbhĂ€ngigkeit von der CUE-DomĂ€ne steigerte AUP1 den ERAD-Prozess. Auch das Herp-Homolog Herp2 war mit Synoviolin-basierten Komplexen assoziiert. Im Gegensatz zu Herp wurde Herp2 nicht durch den UPR-Signalweg induziert, war stabil und interagierte nicht Usp7. Diese Daten unterstreichen die einzigartige Funktion von Herp im ERAD-Prozess. Schlussfolgernd ist Herp eine dynamische ERAD-Komponente, welche die Rekrutierung akzessorischer Proteine an Synoviolin vermittelt und damit die Ubiquitinierung von Synoviolin-Substraten ermöglicht. Diese Daten zeigen die kritische Rolle von Herp fĂŒr die Beseitigung fehlerhafter Proteine und das Überleben der Zelle.The accumulation of aberrant proteins in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR) pathway for surmounting this cellular stress situation. One of the strongly UPR-induced genes in mammalia encodes the ubiquitin domain protein Herp. Herp interacts with the E3 ligase Synoviolin, a central component of ER associated protein degradation (ERAD) mediating multiprotein complexes. Dependent on its ubiquitin-like (UBL) domain, Herp is required for the efficient degradation of Synoviolin substrates. The molecular mechanism underlying this function of Herp is poorly understood. In the present study, it was shown that Herp is continuously exchanged at Synoviolin based complexes. However, Herp did not serve as a Synoviolin substrate. Since both stabilisation and depletion of Herp resulted in the impaired degradation of Synoviolin substrates, the continuous turnover of Herp seems to be decisive for ERAD. Herp was also shown to regulate the composition of Synoviolin based complexes. The deubiquitinating enzyme Usp7 was linked to Synoviolin via its interaction with Herp. However, Usp7 did not influence the stability of Herp or ERAD substrates. In addition, Herp improved the association of the CUE domain protein AUP1 with Synoviolin. AUP1 triggered the ERAD process in a CUE domain dependent manner. Also Herp2, a homologue of Herp, was found to associate with Synoviolin based complexes. However, in contrast to Herp, Herp2 was not induced by the UPR, was stable, and did not bind Usp7 supporting the idea of Herp having a unique function in ERAD. In conclusion, Herp is a dynamic ERAD component recruiting accessory proteins to Synoviolin thus enabling Synoviolin dependent ubiquitination of substrates. These findings point out the crucial role of Herp for the elimination of misfolded proteins, which is important for cell survival

    Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study

    Get PDF
    Spinal cord injury (SCI) above mid-thoracic levels leads to autonomic dysfunction affecting both the cardiovascular system and thermoregulation. The renin-angiotensin system (RAS) which is a potent regulator of blood pressure, including its novel beneficial arm with the receptor Mas could be an interesting target in post-SCI hemodynamics. To test the hypothesis that hemodynamics, activity and diurnal patterns of those are more affected in the Mas deficient mice post-SCI we used a mouse model of SCI with complete transection of spinal cord at thoracic level 4 (T4-Tx) and performed telemetric monitoring of blood pressure (BP) and heart rate (HR). Our data revealed that hypothermia deteriorated physiological BP and HR control. Preserving normothermia by keeping mice at 30°C prevented severe hypotension and bradycardia post-SCI. Moreover, it facilitated rapid return of diurnal regulation of BP, HR and activity in wild type (WT) mice. In contrast, although Mas deficient mice had comparable reacquisition of diurnal HR rhythm, they showed delayed recovery of diurnal rhythmicity in BP and significantly lower nocturnal activity. Exposing mice with T4-Tx (kept in temperature-controlled cages) to 23°C room temperature for one hour at different time-points post-SCI, demonstrated their inability to maintain core body temperature, Mas deficient mice being significantly more impaired than WT littermates. We conclude that Mas deficient mice were more resistant to acute hypotension, delayed nocturnal recovery, lower activity and more severely impaired thermoregulation. The ambient temperature had significant effect on hemodynamics and, thus it should be taken into account when assessing cardiovascular parameters post-SCI in mice.Peer Reviewe

    Ninjurin1 regulates striated muscle growth and differentiation

    Get PDF
    Chronic pressure overload due to aortic valve stenosis leads to pathological cardiac hypertrophy and heart failure. Hypertrophy is accompanied by an increase in myocyte surface area, which requires a proportional increase in the number of cell-cell and cell-matrix contacts to withstand enhanced workload. In a proteomic analysis we identified nerve injury-induced protein 1 (Ninjurin1), a 16kDa transmembrane cell-surface protein involved in cell adhesion and nerve repair, to be increased in hypertrophic hearts from patients with aortic stenosis. We hypothesised that Ninjurin1 is involved in myocyte hypertrophy. We analyzed cardiac biopsies from aortic-stenosis patients and control patients undergoing elective heart surgery. We studied cardiac hypertrophy in mice after transverse aortic constriction and angiotensin II infusions, and performed mechanistic analyses in cultured myocytes. We assessed the physiological role of ninjurin1 in zebrafish during heart and skeletal muscle development. Ninjurin1 was increased in hearts of aortic stenosis patients, compared to controls, as well as in hearts from mice with cardiac hypertrophy. Besides the 16kDa Ninjurin1 (Ninjurin1-16) we detected a 24kDa variant of Ninjurin1 (Ninjurin1-24), which was predominantly expressed during myocyte hypertrophy. We disclosed that the higher molecular weight of Ninjurin1-24 was caused by N-glycosylation. Ninjurin1-16 was contained in the cytoplasm of myocytes where it colocalized with stress-fibers. In contrast, Ninjurin1-24 was localized at myocyte membranes. Gain and loss-of-function experiments showed that Ninjurin1-24 plays a role in myocyte hypertrophy and myogenic differentiation in vitro. Reduced levels of ninjurin1 impaired cardiac and skeletal muscle development in zebrafish. We conclude that Ninjurin1 contributes to myocyte growth and differentiation, and that these effects are mainly mediated by N-glycosylated Ninjurin1-24

    Serum amyloid A1 mediates myotube atrophy via Toll‐like receptors

    Get PDF
    Background Critically ill patients frequently develop muscle atrophy and weakness in the intensive-care-unit setting [intensive care unit-acquired weakness (ICUAW)]. Sepsis, systemic inflammation, and acute-phase response are major risk factors. We reported earlier that the acute-phase protein serum amyloid A1 (SAA1) is increased and accumulates in muscle of ICUAW patients, but its relevance was unknown. Our objectives were to identify SAA1 receptors and their downstream signalling pathways in myocytes and skeletal muscle and to investigate the role of SAA1 in inflammation-induced muscle atrophy. Methods We performed cell-based in vitro and animal in vivo experiments. The atrophic effect of SAA1 on differentiated C2C12 myotubes was investigated by analysing gene expression, protein content, and the atrophy phenotype. We used the cecal ligation and puncture model to induce polymicrobial sepsis in wild type mice, which were treated with the IĐșB kinase inhibitor Bristol-Myers Squibb (BMS)-345541 or vehicle. Morphological and molecular analyses were used to investigate the phenotype of inflammation-induced muscle atrophy and the effects of BMS-345541 treatment. Results The SAA1 receptors Tlr2, Tlr4, Cd36, P2rx7, Vimp, and Scarb1 were all expressed in myocytes and skeletal muscle. Treatment of differentiated C2C12 myotubes with recombinant SAA1 caused myotube atrophy and increased interleukin 6 (Il6) gene expression. These effects were mediated by Toll-like receptors (TLR) 2 and 4. SAA1 increased the phosphorylation and activity of the transcription factor nuclear factor ‘kappa-light-chain-enhancer' of activated B-cells (NF-ÎșB) p65 via TLR2 and TLR4 leading to an increased binding of NF-ÎșB to NF-ÎșB response elements in the promoter region of its target genes resulting in an increased expression of NF-ÎșB target genes. In polymicrobial sepsis, skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with the atrophy response. Inhibition of NF-ÎșB signalling by BMS-345541 increased survival (28.6% vs. 91.7%, P < 0.01). BMS-345541 diminished inflammation-induced atrophy as shown by a reduced weight loss of the gastrocnemius/plantaris (vehicle: −21.2% and BMS-345541: −10.4%; P < 0.05), tibialis anterior (vehicle: −22.7% and BMS-345541: −17.1%; P < 0.05) and soleus (vehicle: −21.1% and BMS-345541: −11.3%; P < 0.05) in septic mice. Analysis of the fiber type specific myocyte cross-sectional area showed that BMS-345541 reduced inflammation-induced atrophy of slow/type I and fast/type II myofibers compared with vehicle-treated septic mice. BMS-345541 reversed the inflammation-induced atrophy program as indicated by a reduced expression of the atrogenes Trim63/MuRF1, Fbxo32/Atrogin1, and Fbxo30/MuSA1. Conclusions SAA1 activates the TLR2/TLR4//NF-ÎșB p65 signalling pathway to cause myocyte atrophy. Systemic inhibition of the NF-ÎșB pathway reduced muscle atrophy and increased survival of septic mice. The SAA1/TLR2/TLR4//NF-ÎșB p65 atrophy pathway could have utility in combatting ICUAW

    Inflammation-induced acute phase response in skeletal muscle and critical illness myopathy.

    Get PDF
    OBJECTIVES: Systemic inflammation is a major risk factor for critical-illness myopathy (CIM) but its pathogenic role in muscle is uncertain. We observed that interleukin 6 (IL-6) and serum amyloid A1 (SAA1) expression was upregulated in muscle of critically ill patients. To test the relevance of these responses we assessed inflammation and acute-phase response at early and late time points in muscle of patients at risk for CIM. DESIGN: Prospective observational clinical study and prospective animal trial. SETTING: Two intensive care units (ICU) and research laboratory. PATIENTS/SUBJECTS: 33 patients with Sequential Organ Failure Assessment scores ≄ 8 on 3 consecutive days within 5 days in ICU were investigated. A subgroup analysis of 12 patients with, and 18 patients without CIM (non-CIM) was performed. Two consecutive biopsies from vastus lateralis were obtained at median days 5 and 15, early and late time points. Controls were 5 healthy subjects undergoing elective orthopedic surgery. A septic mouse model and cultured myoblasts were used for mechanistic analyses. MEASUREMENTS AND MAIN RESULTS: Early SAA1 expression was significantly higher in skeletal muscle of CIM compared to non-CIM patients. Immunohistochemistry showed SAA1 accumulations in muscle of CIM patients at the early time point, which resolved later. SAA1 expression was induced by IL-6 and tumor necrosis factor-alpha in human and mouse myocytes in vitro. Inflammation-induced muscular SAA1 accumulation was reproduced in a sepsis mouse model. CONCLUSIONS: Skeletal muscle contributes to general inflammation and acute-phase response in CIM patients. Muscular SAA1 could be important for CIM pathogenesis. TRIAL REGISTRATION: ISRCTN77569430

    Muscular <i>SAA1</i> and <i>SAA4</i> expression and accumulation in CIM patients.

    No full text
    <p>Control values (no ICU subjects) were set to one and means were indicated as dashed lines. (A) RT-PCR analyses of <i>SAA1</i> and <i>SAA4</i> expression at early (day 5) and late (day 15) time points in <i>vastus lateralis</i> muscle of critically ill patients, and (B) CIM and non-CIM patients. <i>Glyceraldehyde-3 phosphate dehydrogenase</i> (<i>GAPDH</i>) expression was used as reference. Data are presented as box plots showing median, 25<sup>th</sup> and 75<sup>th</sup> percentiles. Wilcoxon tests were performed between early and late biopsy specimens and Mann-Whitney tests for the respective time points and controls. ***<i>P</i><0.001, **<i>P</i><0.01, *<i>P</i><0.05, or n.s. (not statistically significant). (C) Immunohistochemistry of SAA1 (green) and the membrane marker laminin (red) on skeletal muscle biopsy specimens from control subjects, non-CIM and CIM patients. Nuclei were stained with 4â€Č,6-diamidino-2-phenylindole (DAPI; blue); scale bar 50 ÎŒm. (D) Higher magnification of the merged picture from CIM patient in (C) to illustrate colocalization of SAA1 (green) and laminin (red) at the cell membrane, accumulation of SAA1 in the interstitium and around myofibers; scale bar 50 ÎŒm.</p
    corecore