27 research outputs found
Classifying Smart Personal Assistants: An Empirical Cluster Analysis
The digital age has yielded systems that increasingly reduce the complexity of our everyday lives. As such, smart personal assistants such as Amazonâs Alexa or Appleâs Siri combine the comfort of intuitive natural language interaction with the utility of personalized and situation-dependent information and service provision. However, research on SPAs is becoming increasingly complex and opaque. To reduce complexity, this paper introduces a classification system for SPAs. Based on a systematic literature review, a cluster analysis reveals five SPA archetypes: Adaptive Voice (Vision) Assistants, Chatbot Assistants, Embodied Virtual Assistants, Passive Pervasive Assistants, and Natural Conversation Assistants
Value Co-Creation in Smart Services: A Functional Affordances Perspective on Smart Personal Assistants
In the realm of smart services, smart personal assistants (SPAs) have become a popular medium for value co-creation between service providers and users. The market success of SPAs is largely based on their innovative material properties, such as natural language user interfaces, machine learning-powered request handling and service provision, and anthropomorphism. In different combinations, these properties offer users entirely new ways to intuitively and interactively achieve their goals and thus co-create value with service providers. But how does the nature of the SPA shape value co-creation processes? In this paper, we look through a functional affordances lens to theorize about the effects of different types of SPAs (i.e., with different combinations of material properties) on usersâ value co-creation processes. Specifically, we collected SPAs from research and practice by reviewing scientific literature and web resources, developed a taxonomy of SPAsâ material properties, and performed a cluster analysis to group SPAs of a similar nature. We then derived 2 general and 11 cluster-specific propositions on how different material properties of SPAs can yield different affordances for value co-creation. With our work, we point out that smart services require researchers and practitioners to fundamentally rethink value co-creation as well as revise affordances theory to address the dynamic nature of smart technology as a service counterpart
Observational constraints on methane emissions from Polish coal mines using a ground-based remote sensing network
Given its abundant coal mining activities, the Upper Silesian Coal Basin (USCB) in southern Poland is one of the largest sources of anthropogenic methane (CH) emissions in Europe. Here, we report on CHemission estimates for coal mine ventilation facilities in the USCB. Our estimates are driven by pairwise upwindâdownwind observations of the column-average dry-air mole fractions of CH (XCH) by a network of four portable, ground-based, sun-viewing Fourier transform spectrometers of the type EM27/SUN operated during the CoMet campaign in MayâJune 2018. The EM27/SUN instruments were deployed in the four cardinal directions around the USCB approximately 50âkm from the center of the basin. We report on six case studies for which we inferred emissions by evaluating the mismatch between the observed downwind enhancements and simulations based on trajectory calculations releasing particles out of the ventilation shafts using the Lagrangian particle dispersion model FLEXPART. The latter was driven by wind fields calculated by WRF (Weather Research and Forecasting model) under assimilation of vertical wind profile measurements of three co-deployed wind lidars. For emission estimation, we use a PhillipsâTikhonov regularization scheme with the L-curve criterion. Diagnosed by the emissions averaging kernels, we find that, depending on the catchment area of the downwind measurements, our ad hoc network can resolve individual facilities or groups of ventilation facilities but that inspecting the emissions averaging kernels is essential to detect correlated estimates. Generally, our instantaneous emission estimates range between 80 and 133âktâCHâa for the southeastern part of the USCB and between 414 and 790âktâCHa for various larger parts of the basin, suggesting higher emissions than expected from the annual emissions reported by the E-PRTR (European Pollutant Release and Transfer Register). Uncertainties range between 23â% and 36â%, dominated by the error contribution from uncertain wind fields
Systematic literature review on user logging in virtual reality
In this systematic literature review, we study the role of user logging in virtual reality research. By categorizing literature according to data collection methods and identifying reasons for data collection, we aim to find out how popular user logging is in virtual reality research. In addition, we identify publications with detailed descriptions about logging solutions. Our results suggest that virtual reality logging solutions are relatively seldom described in detail despite that many studies gather data by body tracking. Most of the papers gather data to witness something about a novel functionality or to compare different technologies without discussing logging details. The results can be used for scoping future virtual reality research.acceptedVersionPeer reviewe
Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ
Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASAâNIER KORUS-AQ (KoreaâUnited States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was âŒ1â3â”gâsmâ3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was âŒ140â”gsmâ3ppmvâ1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20â70â”gsmâ3ppmvâ1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13â”gâsmâ3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11â% on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9â% of the modeled SOA over Seoul. Finally, along with these results, we use the metric ÎOA/ÎCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ÎOAâÎCO
Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ
Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA-NIER KORUS-AQ (Korea-United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was similar to 1-3 mu g sm(-3). Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was similar to 140 mu g sm(-3) ppmv 1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20-70 mu g sm(-3) ppmv(-1) at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 mu g sm(-3)), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11% on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9% of the modeled SOA over Seoul. Finally, along with these results, we use the metric Delta OA/Delta CO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than Delta OA/Delta CO
Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ
Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASAâNIER KORUS-AQ (KoreaâUnited States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was âŒ1â3â”gâsm^(â3). Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was âŒ140â”gsm^(â3) ppmv^(â1) at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20â70â”gsm^(â30) ppmv^(â1) at 0.5 equivalent days). For the average OA concentration observed over Seoul (13â”gâsm^(â3)), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11â% on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9â% of the modeled SOA over Seoul. Finally, along with these results, we use the metric ÎOA/ÎCO_2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ÎOAâÎCO