132 research outputs found
Detection of vortex tubes in solar granulation from observations with Sunrise
We have investigated a time series of continuum intensity maps and
corresponding Dopplergrams of granulation in a very quiet solar region at the
disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board
the balloon-borne solar observatory Sunrise. We find that granules frequently
show substructure in the form of lanes composed of a leading bright rim and a
trailing dark edge, which move together from the boundary of a granule into the
granule itself. We find strikingly similar events in synthesized intensity maps
from an ab initio numerical simulation of solar surface convection. From cross
sections through the computational domain of the simulation, we conclude that
these `granular lanes' are the visible signature of (horizontally oriented)
vortex tubes. The characteristic optical appearance of vortex tubes at the
solar surface is explained. We propose that the observed vortex tubes may
represent only the large-scale end of a hierarchy of vortex tubes existing near
the solar surface.Comment: Astrophysical Journal Letters: Sunrise Special Issue, reveived 2010
June 16; accepted 2010 August
Morphological properties of slender Ca II H fibrils observed by SUNRISE II
We use seeing-free high spatial resolution Ca II H data obtained by the
SUNRISE observatory to determine properties of slender fibrils in the lower
solar chromosphere. In this work we use intensity images taken with the SUFI
instrument in the Ca II H line during the second scientific flight of the
SUNRISE observatory to identify and track elongated bright structures. After
the identification, we analyze theses structures in order to extract their
morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with
an average width of around 180 km, a length between 500 km and 4000 km, an
average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The
maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s.
We discuss similarities and differences of the SCFs with other small-scale,
chromospheric structures such as spicules of type I and II, or Ca II K fibrils.Comment: Accepted for publication in The Astrophysical Journal Supplement
Serie
6-Methoxy-2,3,4,9-tetrahydro-1H-carbazol-1-one
The carbazole unit of the title molecule, C13H13NO2, is not planar. The dihedral angle between the benzene ring and the pyrrole ring is 1.69 (6)°. The cyclohexene ring adopts an envelope conformation. Intermolecular C—H⋯O and N—H⋯O hydrogen bonds are present in the crystal structure. A C—H⋯π interaction, involving the benzene ring, is also found in the crystal structure
Hinode Observations of Magnetic Elements in Internetwork Areas
We use sequences of images and magnetograms from Hinode to study magnetic
elements in internetwork parts of the quiet solar photosphere. Visual
inspection shows the existence of many long-lived (several hours) structures
that interact frequently, and may migrate over distances ~7 Mm over a period of
a few hours. About a fifth of the elements have an associated bright point in
G-band or Ca II H intensity. We apply a hysteresis-based algorithm to identify
elements. The algorithm is able to track elements for about 10 min on average.
Elements intermittently drop below the detection limit, though the associated
flux apparently persists and often reappears some time later. We infer proper
motions of elements from their successive positions, and find that they obey a
Gaussian distribution with an rms of 1.57+-0.08 km/s. The apparent flows
indicate a bias of about 0.2 km/s toward the network boundary. Elements of
negative polarity show a higher bias than elements of positive polarity,
perhaps as a result of to the dominant positive polarity of the network in the
field of view, or because of increased mobility due to their smaller size. A
preference for motions in X is likely explained by higher supergranular flow in
that direction. We search for emerging bipoles by grouping elements of opposite
polarity that appear close together in space and time. We find no evidence
supporting Joy's law at arcsecond scales.Comment: 22 pages, 12 figure
Recommended from our members
High fusion performance in Super H-mode experiments on Alcator C-Mod and DIII-D
The 'Super H-Mode' regime is predicted to enable pedestal height and fusion performance substantially higher than standard H-Mode operation. This regime exists due to a bifurcation of the pedestal pressure, as a function of density, that is predicted by the EPED model to occur in strongly shaped plasmas above a critical pedestal density. Experiments on Alcator C-Mod and DIII-D have achieved access to the Super H-Mode (and Near Super H) regime, and obtained very high pedestal pressure, including the highest achieved on a tokamak (p ped ∼ 80 kPa) in C-Mod experiments operating near the ITER magnetic field. DIII-D Super H experiments have demonstrated strong performance, including the highest stored energy in the present configuration of DIII-D (W ∼ 2.2-3.2 MJ), while utilizing only about half of the available heating power (P heat ∼ 7-12 MW). These DIII-D experiments have obtained the highest value of peak fusion gain, Q DT,equiv ∼ 0.5, achieved on a medium scale (R < 2 m) tokamak. Sustained high performance operation (β N ∼ 2.9, H98 ∼ 1.6) has been achieved utilizing n = 3 magnetic perturbations for density and impurity control. Pedestal and global confinement has been maintained in the presence of deuterium and nitrogen gas puffing, which enables a more radiative divertor condition. A pair of simple performance metrics is developed to assess and compare regimes. Super H-Mode access is predicted for ITER and expected, based on both theoretical prediction and observed normalized performance, to allow ITER to achieve its goals (Q = 10) at I p < 15 MA, and to potentially enable more compact, cost effective pilot plant and reactor designs
Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design
A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme
Overview of JET results for optimising ITER operation
The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.Confining plasma and managing disruptions in tokamak devices is a challenge. Here the authors demonstrate a method predicting and possibly preventing disruptions and macroscopic instabilities in tokamak plasma using data from JET
New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus
New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing
- …