12 research outputs found

    Genome-wide analysis of signaling networks regulating fatty acid–induced gene expression and organelle biogenesis

    Get PDF
    Reversible phosphorylation is the most common posttranslational modification used in the regulation of cellular processes. This study of phosphatases and kinases required for peroxisome biogenesis is the first genome-wide analysis of phosphorylation events controlling organelle biogenesis. We evaluate signaling molecule deletion strains of the yeast Saccharomyces cerevisiae for presence of a green fluorescent protein chimera of peroxisomal thiolase, formation of peroxisomes, and peroxisome functionality. We find that distinct signaling networks involving glucose-mediated gene repression, derepression, oleate-mediated induction, and peroxisome formation promote stages of the biogenesis pathway. Additionally, separate classes of signaling proteins are responsible for the regulation of peroxisome number and size. These signaling networks specify the requirements of early and late events of peroxisome biogenesis. Among the numerous signaling proteins involved, Pho85p is exceptional, with functional involvements in both gene expression and peroxisome formation. Our study represents the first global study of signaling networks regulating the biogenesis of an organelle

    Myosin-driven peroxisome partitioning in S. cerevisiae

    Get PDF
    In Saccharomyces cerevisiae, the class V myosin motor Myo2p propels the movement of most organelles. We recently identified Inp2p as the peroxisome-specific receptor for Myo2p. In this study, we delineate the region of Myo2p devoted to binding peroxisomes. Using mutants of Myo2p specifically impaired in peroxisome binding, we dissect cell cycle–dependent and peroxisome partitioning–dependent mechanisms of Inp2p regulation. We find that although total Inp2p levels oscillate with the cell cycle, Inp2p levels on individual peroxisomes are controlled by peroxisome inheritance, as Inp2p aberrantly accumulates and decorates all peroxisomes in mother cells when peroxisome partitioning is abolished. We also find that Inp2p is a phosphoprotein whose level of phosphorylation is coupled to the cell cycle irrespective of peroxisome positioning in the cell. Our findings demonstrate that both organelle positioning and cell cycle progression control the levels of organelle-specific receptors for molecular motors to ultimately achieve an equidistribution of compartments between mother and daughter cells

    Doing the math

    No full text

    Global gene profiling of VCP-associated inclusion body myopathy

    No full text
    Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder caused by mutations in the Valosin Containing Protein (VCP) gene on chromosome 9p12-13. Patients demonstrate limb girdle muscle weakness, which eventually progresses to involve respiratory muscles, and death from respiratory and cardiac failure. This is the first investigation to analyze key molecular mediators and signaling cascades in skeletal muscle causing myopathy by global gene microarray in hopes of understanding the dysregulated genes and molecular mechanisms underlying IBMPFD and the hope of finding novel therapeutic targets. We determined expression profiles using Human Genome Array microarray technology in Vastus lateralis muscles from patients and their first degree relatives. We analyzed gene annotations by DAVID and identified differentially dysregulated genes with roles in several novel biological pathways, including regulation of actin cytoskeleton, ErbB signaling, cancer, in addition to regulation of autophagy, and lysosomal signaling, known disrupted pathways in VCP disease. In this report, we present data from the first global microarray analyzing IBMPFD patient muscles and elucidating dysregulated pathways to further understand the pathogenesis of the disease and discover potential therapeutics

    Phosphorylation-dependent Activation of Peroxisome Proliferator Protein PEX11 Controls Peroxisome Abundance*

    No full text
    Peroxisomes are dynamic organelles that divide continuously in growing cell cultures and expand extensively in lipid-rich medium. Peroxisome population control is achieved in part by Pex11p-dependent regulation of peroxisome size and number. Although the production of Pex11p in yeast is tightly linked to peroxisome biogenesis by transcriptional regulation of the PEX11 gene, it remains unclear if and how Pex11p activity could be modulated by rapid signaling. We report the reversible phosphorylation of Saccharomyces cerevisiae Pex11p in response to nutritional cues and delineate a mechanism for phosphorylation-dependent activation of Pex11p through the analysis of phosphomimicking mutants. Peroxisomal phenotypes in the PEX11-A and PEX11-D strains expressing constitutively dephosphorylated and phosphorylated forms of Pex11p resemble those of PEX11 gene knock-out and overexpression mutants, although PEX11 transcript and Pex11 protein levels remain unchanged. We demonstrate functional inequality and differences in subcellular localization of the Pex11p forms. Pex11Dp promotes peroxisome fragmentation when reexpressed in cells containing induced peroxisomes. Pex11p translocates between endoplasmic reticulum and peroxisomes in a phosphorylation-dependent manner, whereas Pex11Ap and Pex11Dp are impaired in trafficking and constitutively associated with mature and proliferating peroxisomes, respectively. Overexpression of cyclin-dependent kinase Pho85p results in hyperphosphorylation of Pex11p and peroxisome proliferation. This study provides the first evidence for control of peroxisome dynamics by phosphorylation-dependent regulation of a peroxin
    corecore