1,293 research outputs found

    Impurity-free seeded crystallization of amorphous silicon by nanoindentation

    No full text
    We demonstrate that nanoindents formed in amorphous Si films, with dimensions as small as ∼20 nm, provide a means to seed solid phase crystallization. During post-indentation annealing at ∼600 °C, solid phase crystallization initiates from the indented sites, effectively removing the incubation time for random nucleation in the absence of seeds. The seeded crystallization is studied by optical microscopy, cross-sectional transmission electron microscopy, and electrical characterization via Hall measurements. Full crystallization can be achieved, with improved electrical characteristics attributed to the improved microstructure, using a lower thermal budget. The process is metal contaminant free and allows for selective area crystallization.The authors gratefully acknowledge financial support from the Australian Research Council and the Natural Sciences and Engineering Research Council of Canada

    Technique for producing highly planar Si/SiO0.64Ge0.36/Si metal–oxide–semiconductor field effect transistor channels

    Get PDF
    Si/Si0.64Ge0.36/Si heterostructures have been grown at low temperature (450 °C) to avoid the strain-induced roughening observed for growth temperatures of 550 °C and above. The electrical properties of these structures are poor, and thought to be associated with grown-in point defects as indicated in positron annihilation spectroscopy. However, after an in situ annealing procedure (800 °C for 30 min) the electrical properties dramatically improve, giving an optimum 4 K mobility of 2500 cm2 V – 1 s – 1 for a sheet density of 6.2 × 1011 cm – 2. The low temperature growth yields highly planar interfaces, which are maintained after anneal as evidenced from transmission electron microscopy. This and secondary ion mass spectroscopy measurements demonstrate that the metastably strained alloy layer can endure the in situ anneal procedure necessary for enhanced electrical properties. Further studies have shown that the layers can also withstand a 120 min thermal oxidation at 800 °C, commensurate with metal–oxide–semiconductor device fabrication

    Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells

    Get PDF
    © 2016 Elsevier B.V. All rights reserved. Aiming at durability issues of fuel cells, this research is dedicated to a novel experimental approach in the analysis of local membrane degradation phenomena in polymer electrolyte fuel cells, shedding light on the potential effects of manufacturing imperfections on this process. With a comprehensive review on historical failure analysis data from field operated fuel cells, local sources of iron oxide contaminants, catalyst layer cracks, and catalyst layer delamination are considered as potential candidates for initiating or accelerating the local membrane degradation phenomena. Customized membrane electrode assemblies with artificial defects are designed, fabricated, and subjected to membrane accelerated stress tests followed by extensive post-mortem analysis. The results reveal a significant accelerating effect of iron oxide contamination on the global chemical degradation of the membrane, but dismiss local traces of iron oxide as a potential stressor for local membrane degradation. Anode and cathode catalyst layer cracks are observed to have negligible impact on the membrane degradation phenomena. Notably however, distinct evidence is found that anode catalyst layer delamination can accelerate local membrane thinning, while cathode delamination has no apparent effect. Moreover, a substantial mitigating effect for platinum residuals on the site of delamination is observed

    Electron and hole mobility reduction and Hall factor in phosphorus-compensated p-type silicon

    No full text
    The conductivity mobility for majority carrier holes in compensated p-type silicon is determined by combined measurement of the resistivity and the net doping, the latter via electrochemical capacitance-voltage measurements. The minority electron mobility was also measured with a technique based on measurements of surface-limited effective carrier lifetimes. While both minority and majority carrier mobilities are found to be significantly reduced by compensation, the impact is greater on the minority electron mobility. The Hall factor, which relates the Hall mobility to the conductivity mobility, has also been determined using the Hall method combined with the capacitance-voltage measurements. Our results indicate a similar Hall factor in both compensated and noncompensated samples.This work was supported by the Australian Research Council ARC and by the DAAD/Go8 researcher exchange funding scheme

    Advancing the Microbiome Research Community

    Get PDF
    The human microbiome has become a recognized factor in promoting and maintaining health. We outline opportunities in interdisciplinary research, analytical rigor, standardization, and policy development for this relatively new and rapidly developing field. Advances in these aspects of the research community may in turn advance our understanding of human microbiome biology. It is now widely recognized that disturbances in our normal microbial populations may be linked to acute infections such as Clostridium difficile and to chronic diseases such as heart disease, cancer, obesity, and autoimmune disorders (Clemente et al., 2012). This has prompted substantial interest in the microbiome from both basic and clinical perspectives. Although our genome is relatively static throughout life, each of our microbial communities changes profoundly from infancy through adulthood, continuing to adapt through ongoing exposures to diet, drugs and environment. Understanding the microbiome and its dynamic nature may be critical for diagnostics and, eventually, interventions based on the microbiome itself. However, several important challenges limit the ability of researchers to enter the microbiome field and/or conduct research most effectively

    Teleworking practice in small and medium-sized firms: Management style and worker autonomy

    Get PDF
    In an empirical study of teleworking practices amongst small and medium-sized enterprises (SMEs) in West London, organisational factors such as management attitudes, worker autonomy and employment flexibility were found to be more critical than technological provision in facilitating successful implementation. Consequently, we argue that telework in most SMEs appears as a marginal activity performed mainly by managers and specialist mobile workers

    The abolition of the General Teaching Council for England and the future of teacher discipline

    Get PDF
    With the abolition of the General Teaching Council for England in the 2011 Education Act, this article considers the future of teacher discipline in England. It provides a critique of the changes to the regulation of teacher misconduct and incompetence that draws on a Foucauldian framework, especially concerning the issue of public displays of discipline and the concomitant movement to more hidden forms. In addition, the external context of accountability that accompanies the reforms to teacher discipline are considered including the perfection of the panoptic metaphor presented by the changes to Ofsted practices such as the introduction of zero-notice inspections. The article concludes that the reforms will further move teachers from being occupational professionals to being organisational professionals marking them apart from comparable professions in medicine and law

    A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen

    Get PDF
    NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8<sup>+</sup>T cell epitope, NY-ESO-1<sub>88–96</sub> (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1<sub>157–165</sub> epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1<sub>88–96</sub> is much more efficiently cross-presented from the soluble form, than NY-ESO-1<sub>157–165</sub>. On the other hand, NY-ESO-1<sub>157–165</sub> is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A<sub>26–35</sub>; whereas NY-ESO-1<sub>88–96</sub> was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1<sub>88–96</sub> is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1<sub>88–96</sub> from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8<sup>+</sup>T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed

    Fuel cell durability enhancement with cerium oxide under combined chemical and mechanical membrane degradation

    Get PDF
    © The Author(s) 2015. Published by ECS. A CeO2 supported membrane electrode assembly (MEA) was fabricated by hot-pressing CeO2-coated electrodes and a PFSA ionomer membrane. Upon application of a combined chemical and mechanical accelerated stress test (AST), the CeO2 supported MEAshowed six times longer lifetime and 40 times lower fluoride emission rate than a baselineMEA without cerium. Themembrane in the CeO2 supported MEA effectively retained its original thickness and ductility despite the highly aggressive AST conditions. Most of the cerium applied on the anode migrated into the membrane and provided excellent mitigation of joint chemical and mechanical membrane degradation
    corecore