308 research outputs found
Segregation of granular binary mixtures by a ratchet mechanism
We report on a segregation scheme for granular binary mixtures, where the
segregation is performed by a ratchet mechanism realized by a vertically shaken
asymmetric sawtooth-shaped base in a quasi-two-dimensional box. We have studied
this system by computer simulations and found that most binary mixtures can be
segregated using an appropriately chosen ratchet, even when the particles in
the two components have the same size, and differ only in their normal
restitution coefficient or friction coefficient. These results suggest that the
components of otherwise non-segregating granular mixtures may be separated
using our method.Comment: revtex, 4 pages, 4 figures, submitte
Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers
Motivated by recent advances in the investigation of fluctuation-driven
ratchets and flows in excited granular media, we have carried out experimental
and simulational studies to explore the horizontal transport of granular
particles in a vertically vibrated system whose base has a sawtooth-shaped
profile. The resulting material flow exhibits novel collective behavior, both
as a function of the number of layers of particles and the driving frequency;
in particular, under certain conditions, increasing the layer thickness leads
to a reversal of the current, while the onset of transport as a function of
frequency occurs gradually in a manner reminiscent of a phase transition. Our
experimental findings are interpreted here with the help of extensive, event
driven Molecular Dynamics simulations. In addition to reproducing the
experimental results, the simulations revealed that the current may be reversed
as a function of the driving frequency as well. We also give details about the
simulations so that similar numerical studies can be carried out in a more
straightforward manner in the future.Comment: 12 pages, 18 figure
Low Complexity Regularization of Linear Inverse Problems
Inverse problems and regularization theory is a central theme in contemporary
signal processing, where the goal is to reconstruct an unknown signal from
partial indirect, and possibly noisy, measurements of it. A now standard method
for recovering the unknown signal is to solve a convex optimization problem
that enforces some prior knowledge about its structure. This has proved
efficient in many problems routinely encountered in imaging sciences,
statistics and machine learning. This chapter delivers a review of recent
advances in the field where the regularization prior promotes solutions
conforming to some notion of simplicity/low-complexity. These priors encompass
as popular examples sparsity and group sparsity (to capture the compressibility
of natural signals and images), total variation and analysis sparsity (to
promote piecewise regularity), and low-rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial
smoothness. This framework is very general and accommodates all low-complexity
regularizers just mentioned, as well as many others. Partial smoothness turns
out to be the canonical way to encode low-dimensional models that can be linear
spaces or more general smooth manifolds. This review is intended to serve as a
one stop shop toward the understanding of the theoretical properties of the
so-regularized solutions. It covers a large spectrum including: (i) recovery
guarantees and stability to noise, both in terms of -stability and
model (manifold) identification; (ii) sensitivity analysis to perturbations of
the parameters involved (in particular the observations), with applications to
unbiased risk estimation ; (iii) convergence properties of the forward-backward
proximal splitting scheme, that is particularly well suited to solve the
corresponding large-scale regularized optimization problem
Psychology and aggression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
The Clinical Sequencing Evidence-Generating Research Consortium: Integrating Genomic Sequencing in Diverse and Medically Underserved Populations
The Clinical Sequencing Evidence-Generating Research (CSER) consortium, now in its second funding cycle, is investigating the effectiveness of integrating genomic (exome or genome) sequencing into the clinical care of diverse and medically underserved individuals in a variety of healthcare settings and disease states. The consortium comprises a coordinating center, six funded extramural clinical projects, and an ongoing National Human Genome Research Institute (NHGRI) intramural project. Collectively, these projects aim to enroll and sequence over 6,100 participants in four years. At least 60% of participants will be of non-European ancestry or from underserved settings, with the goal of diversifying the populations that are providing an evidence base for genomic medicine. Five of the six clinical projects are enrolling pediatric patients with various phenotypes. One of these five projects is also enrolling couples whose fetus has a structural anomaly, and the sixth project is enrolling adults at risk for hereditary cancer. The ongoing NHGRI intramural project has enrolled primarily healthy adults. Goals of the consortium include assessing the clinical utility of genomic sequencing, exploring medical follow up and cascade testing of relatives, and evaluating patient-provider-laboratory level interactions that influence the use of this technology. The findings from the CSER consortium will offer patients, healthcare systems, and policymakers a clearer understanding of the opportunities and challenges of providing genomic medicine in diverse populations and settings, and contribute evidence toward developing best practices for the delivery of clinically useful and cost-effective genomic sequencing in diverse healthcare settings
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Recommended from our members
Track A Basic Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138319/1/jia218438.pd
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
- …