32 research outputs found

    PowerShake: power transfer interactions for mobile devices

    Get PDF
    Current devices have limited battery life, typically lasting less than one day. This can lead to situations where critical tasks, such as making an emergency phone call, are not possible. Other devices, supporting different functionality, may have sufficient battery life to enable this task. We present PowerShake; an exploration of power as a shareable commodity between mobile (and wearable) devices. PowerShake enables users to control the balance of power levels in their own devices (intra-personal transactions) and to trade power with others (inter-personal transactions) according to their ongoing usage requirements. This paper demonstrates Wireless Power Transfer (WPT) between mobile devices. PowerShake is: simple to perform on-the-go; supports ongoing/continuous tasks (transferring at ~3.1W); fits in a small form factor; and is compliant with electromagnetic safety guidelines while providing charging efficiency similar to other standards (48.2% vs. 51.2% in Qi). Based on our proposed technical implementation, we run a series of workshops to derive candidate designs for PowerShake enabled devices and interactions, and to bring to light the social implications of power as a tradable asset

    Quick and dirty : streamlined 3D scanning in archaeology

    Get PDF
    Capturing data is a key part of archaeological practice, whether for preserving records or to aid interpretation. But the technologies used are complex and expensive, resulting in time-consuming processes associated with their use. These processes force a separation between ongoing interpretive work and capture. Through two field studies we elicit more detail as to what is important about this interpretive work and what might be gained through a closer integration of capture technology with these practices. Drawing on these insights, we go on to present a novel, portable, wireless 3D modeling system that emphasizes "quick and dirty" capture. We discuss its design rational in relation to our field observations and evaluate this rationale further by giving the system to archaeological experts to explore in a variety of settings. While our device compromises on the resolution of traditional 3D scanners, its support of interpretation through emphasis on real-time capture, review and manipulability suggests it could be a valuable tool for the future of archaeology

    SensaBubble: a chrono-sensory mid-air display of sight and smell

    Get PDF
    We present SensaBubble, a chrono-sensory mid-air display system that generates scented bubbles to deliver information to the user via a number of sensory modalities. The system reliably produces single bubbles of specific sizes along a directed path. Each bubble produced by SensaBubble is filled with fog containing a scent relevant to the notification. The chrono-sensory aspect of SensaBubble means that information is presented both temporally and multimodally. Temporal information is enabled through two forms of persistence: firstly, a visual display projected onto the bubble which only endures until it bursts; secondly, a scent released upon the bursting of the bubble slowly disperses and leaves a longer-lasting perceptible trace of the event. We report details of SensaBubble’s design and implementation, as well as results of technical and user evaluations. We then discuss and demonstrate how SensaBubble can be adapted for use in a wide range of application contexts – from an ambient peripheral display for persistent alerts, to an engaging display for gaming or education

    Auto-Pa\'izo Games: Towards Understanding the Design of Games that Aim to Unify a Player's Physical Body and the Virtual World

    Full text link
    Most digital bodily games focus on the body as they use movement as input. However, they also draw the player's focus away from the body as the output occurs on visual displays, creating a divide between the physical body and the virtual world. We propose a novel approach - the ''Body as a Play Material'' - where a player uses their body as both input and output to unify the physical body and the virtual world. To showcase this approach, we designed three games where a player uses one of their hands (input) to play against the other hand (output) by loaning control over its movements to an Electrical Muscle Stimulation (EMS) system. We conducted a thematic analysis on the data obtained from a field study with 12 participants to articulate four player experience themes. We discuss our results about how participants appreciated the engagement with the variety of bodily movements for play and the ambiguity of using their body as a play material. Ultimately, our work aims to unify the physical body and the virtual world.Comment: This paper will be published at Annual Symposium on Computer-Human Interaction in Play (CHI PLAY) 202

    Fused Spectatorship: Designing Bodily Experiences Where Spectators Become Players

    Full text link
    Spectating digital games can be exciting. However, due to its vicarious nature, spectators often wish to engage in the gameplay beyond just watching and cheering. To blur the boundaries between spectators and players, we propose a novel approach called ''Fused Spectatorship'', where spectators watch their hands play games by loaning bodily control to a computational Electrical Muscle Stimulation (EMS) system. To showcase this concept, we designed three games where spectators loan control over both their hands to the EMS system and watch them play these competitive and collaborative games. A study with 12 participants suggested that participants could not distinguish if they were watching their hands play, or if they were playing the games themselves. We used our results to articulate four spectator experience themes and four fused spectator types, the behaviours they elicited and offer one design consideration to support each of these behaviours. We also discuss the ethical design considerations of our approach to help game designers create future fused spectatorship experiences.Comment: This paper is going to be published at Annual Symposium on Computer-Human Interaction in Play (CHI PLAY) 202

    Optimising Automatic Calibration of Electric Muscle Stimulation

    No full text
    Electrical Muscle Stimulation (EMS) has become a popular interaction technology in Human-Computer Interaction; allowing the computer to take direct control of the user's body. To date, however, the explorations have been limited to coarse, toy examples, due to the low resolution of achievable control. To increase this resolution, the EMS needs to increase significantly in complexity - using large numbers of electrodes in complex patterns. The calibration of such a system remains an unsolved challenge. We present a new SAT-based black-box calibration method, which requires no spatial information about muscular or electrode positioning. The method encodes domain knowledge and observations in a constraint model, and uses these to prune the space of feasible control signals. In a simulated environment we find this method can scale reliably to large arrays while requiring only a modest number of trials, and preliminary tests on real hardware show we can effectively calibrate an electrode array in a few minutes
    corecore