24 research outputs found

    Dynamics of the Gut Microbiota in Children Receiving Selective or Total Gut Decontamination Treatment during Hematopoietic Stem Cell Transplantation

    Get PDF
    Bloodstream infections and graft-versus-host disease are common complications after hematopoietic stem cell transplantation (HSCT) procedures, associated with the gut microbiota that acts as a reservoir for opportunistic pathogens. Selective gut decontamination (SGD) and total gut decontamination (TGD) during HSCT have been associated with a decreased risk of developing these complications after transplantation. However, because studies have shown conflicting results, the use of these treatments remains subject of debate. In addition, their impact on the gut microbiota is not well studied. The aim of this study was to elucidate the dynamics of the microbiota during and after TGD and to compare these with the dynamics of SGD. In this prospective, observational, single center study fecal samples were longitudinally collected from 19 children eligible for allogenic HSCT (TGD, n=12; SGD, n=7), weekly during hospital admission and monthly after discharge. In addition, fecal samples were collected from 3 family stem cell donors. Fecal microbiota structure of patients and donors was determined by 16S rRNA gene amplicon sequencing. Microbiota richness and diversity markedly decreased during SGD and TGD and gradually increased after cessation of decontamination treatment. During SGD, gut microbiota composition was relatively stable and dominated by Bacteroides, whereas it showed high inter- and intraindividual variation and low Bacteroides abundance during TGD. In some children TGD allowed the genera Enterococcus and Streptococcus to thrive during treatment. A gut microbiota dominated by Bacteroides was associated with increased predicted activity of several metabolic processes. Comparing the microbiota of recipients and their donors indicated that receiving an SCT did not alter the patient's microbiota to become more similar to that of its donor. Overall, our findings indicate that SGD and TGD affect gut microbiota structure in a treatment-specific manner. Whether these treatments affect clinical outcomes via interference with the gut microbiota needs to be further elucidated. (C) 2019 American Society for Blood and Marrow Transplantation.Peer reviewe

    Nasal microbiota dominated by Moraxella spp. is associated with respiratory health in the elderly population: a case control study

    No full text
    BACKGROUND: The elderly (≥65 years) are one of the populations most at risk for respiratory tract infections (RTIs). The aim of this study was to determine whether nasal and/or oropharyngeal microbiota profiles are associated with age and RTIs. METHODS: Nasal and oropharyngeal swabs of 152 controls and 152 patients with an RTI were included. The latter group consisted of 72 patients with an upper respiratory tract infection (URTI) and 80 with a lower respiratory tract infection (LRTI). Both nasal and oropharyngeal swabs were subjected to microbiota profiling using amplicon sequencing of the 16S rRNA gene. Moraxella species were determined using quantitative real-time PCR and culture. RESULTS: Based on the microbiota profiles of the controls and the patients with an RTI, eight nasal and nine oropharyngeal microbiota clusters were defined. Nasal microbiota dominated by either Moraxella catarrhalis or Moraxella nonliquefaciens was significantly more prevalent in elderly compared to mid-aged adults in the control group (p = 0.002). Dominance by M. catarrhalis/nonliquefaciens was significantly less prevalent in elderly with an LRTI (p = 0.001) compared to controls with similar age. CONCLUSION: Nasal microbiota dominated by M. catarrhalis/nonliquefaciens is associated with respiratory health in the elderly population

    Prevalence of colistin resistance gene (mcr-1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli.

    No full text
    The emergence of the plasmid-mediated mcr colistin resistance gene in the community poses a potential threat for treatment of patients, especially when hospitalized. The aim of this study was to determine the prevalence of all currently known mcr mediated colistin resistance gene in fecal samples of patients attending a tertiary care hospital. From November 2014 until July 2015, fecal samples of patients attending the Leiden University Medical Center were collected and screened for presence of mcr using real-time PCR. Two of 576 patients were positive for mcr-1, resulting in a prevalence of 0.35%, whereas no mcr-2 was found. One of these samples was culture negative, the second sample contained a blaCMY-2 and mcr-1 containing E.coli. This strain belonged to Sequence Type 359 and serotype O177:H21. The mcr-1 containing E.coli was phenotypically susceptible to colistin with a MIC of ≤ 0.25mg/l, due to a 1329bp transposon IS10R inserted into the mcr-1 gene as identified by WGS. This prevalence study shows that mcr-1 is present in low levels patients out of the community attending a hospital. Furthermore the study underlines the importance of phenotypical confirmation of molecular detection of a mcr-1 gene

    Gut microbiota structure in the course of pediatric allo-HSCT

    No full text
    Effect of selective and total gut decontamination treatments on gut microbiota structure in the course of pediatric allogenic HSCT, as determined via 16S rRNA gene amplicon sequencing

    Gut microbiota structure in the course of pediatric allo-HSCT

    No full text
    Effect of selective and total gut decontamination treatments on gut microbiota structure in the course of pediatric allogenic HSCT, as determined via 16S rRNA gene amplicon sequencing

    Circular presentation of the <i>mcr-1</i> containing <i>IncX4</i> plasmid in the colistin susceptible <i>E</i>.<i>coli</i>.

    No full text
    <p>In green the <i>mcr-1</i> sequence. In red the IS10R insertion sequence, interrupting the <i>mcr-1</i> gene at position 572. Arrows indicate open reading frames (ORFs), dark blue ORFs with annotation, light blue ORFs without annotation (hypothetical protein). Numbers indicate nucleotide positions.</p
    corecore