412 research outputs found
PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos.
Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n=120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P≤0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P≤0.05) and PON1 192 (P≤0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal
Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids
Incoherent neutron scattering experiments are simulated for simple dynamic
models: a glass (with a smooth distribution of harmonic vibrations) and a
viscous liquid (described by schematic mode-coupling equations). In most
situations multiple scattering has little influence upon spectral
distributions, but it completely distorts the wavenumber-dependent amplitudes.
This explains an anomaly observed in recent experiments
Energy landscape - a key concept for the dynamics of glasses and liquids
There is a growing belief that the mode coupling theory is the proper
microscopic theory for the dynamics of the undercooled liquid above a critical
temperature T_c. In addition, there is some evidence that the system leaves the
saddlepoints of the energy landscape to settle in the valleys at this critical
temperature. Finally, there is a microscopic theory for the entropy at the
calorimetric glass transition T_g by Mezard and Parisi, which allows to
calculate the Kauzmann temperature from the atomic pair potentials.
The dynamics of the frozen glass phase is at present limited to
phenomenological models. In the spirit of the energy landscape concept, one
considers an ensemble of independent asymmetric double-well potentials with a
wide distribution of barrier heights and asymmetries (ADWP or Gilroy-Phillips
model). The model gives an excellent description of the relaxation of glasses
up to about T_g/4. Above this temperature, the interaction between different
relaxation centers begins to play a role. One can show that the interaction
reduces the number of relaxation centers needed to bring the shear modulus down
to zero by a factor of three.Comment: Contribution to the III Workshop on Nonequilibrium Phenomena in
Supercooled Fluids, Glasses and Amorphous Materials, 22-27 September 2002,
Pisa; 14 pages, 3 figures; Version 3 takes criticque at Pisa into account;
final version 4 will be published in J.Phys.: Condens.Matte
Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells
Embryonic stem cells (ESC) have the potential to self-renew indefinitely and
to differentiate into any of the three germ layers. The molecular mechanisms
for self-renewal, maintenance of pluripotency and lineage specification are
poorly understood, but recent results point to a key role for epigenetic
mechanisms. In this study, we focus on quantifying the impact of histone 3
acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We
analyze genome-wide histone acetylation patterns and gene expression profiles
measured over the first five days of cell differentiation triggered by
silencing Nanog, a key transcription factor in ESC regulation. We explore the
temporal and spatial dynamics of histone acetylation data and its correlation
with gene expression using supervised and unsupervised statistical models. On a
genome-wide scale, changes in acetylation are significantly correlated to
changes in mRNA expression and, surprisingly, this coherence increases over
time. We quantify the predictive power of histone acetylation for gene
expression changes in a balanced cross-validation procedure. In an in-depth
study we focus on genes central to the regulatory network of Mouse ESC,
including those identified in a recent genome-wide RNAi screen and in the
PluriNet, a computationally derived stem cell signature. We find that compared
to the rest of the genome, ESC-specific genes show significantly more
acetylation signal and a much stronger decrease in acetylation over time, which
is often not reflected in an concordant expression change. These results shed
light on the complexity of the relationship between histone acetylation and
gene expression and are a step forward to dissect the multilayer regulatory
mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog
Molecular mode-coupling theory applied to a liquid of diatomic molecules
We study the molecular mode coupling theory for a liquid of diatomic
molecules. The equations for the critical tensorial nonergodicity parameters
and the critical amplitudes of the - relaxation
are solved up to a cut off = 2 without any
further approximations.
Here are indices of spherical harmonics. Contrary to previous studies,
where additional approximations were applied, we find in agreement with
simulations, that all molecular degrees of freedom vitrify at a single
temperature . The theoretical results for the non ergodicity parameters
and the critical amplitudes are compared with those from simulations. The
qualitative agreement is good for all molecular degrees of freedom. To study
the influence of the cut off on the non ergodicity parameter, we also calculate
the non ergodicity parameters for an upper cut off . In addition we
also propose a new method for the calculation of the critical nonergodicity
parameterComment: 27 pages, 17 figure
Poisoning with the S-Alkyl organophosphorus insecticides profenofos and prothiofos
Background: Many organophosphorus (OP) insecticides have either two O-methyl or two O-ethyl groups attached to the phosphorus atom. This chemical structure affects their responsiveness to oxime-induced acetylcholinesterase (AChE) reactivation after poisoning. However, several OP insecticides are atypical and do not have these structures
Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies
Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity standards. However, we find these site-specific histone antibodies preferentially recognize chromatin signatures containing two or more adjacent acetylated lysines. Significantly, we find that the poly-acetylated epitopes these antibodies prefer are evolutionarily conserved and are present at levels that compete for these antibodies over the intended individual acetylation sites. This alarming property of acetyl-specific antibodies has far-reaching implications for data interpretation and may present a challenge for the future study of acetylated histone and non-histone proteins
A multicentric study on stigma towards people with mental illness in health sciences students
BackgroundThere is evidence of negative attitudes among health professionals towards people with mental illness but there is also a knowledge gap on what training must be given to these health professionals during their education. The purpose of this study is to compare the attitudes of students of health sciences: nursing, medical, occupational therapy, and psychology.MethodsA comparative and cross-sectional study in which 927 final-year students from health sciences university programmes were evaluated using the Mental Illness: Clinicians' Attitudes (both MICA-2 and MICA-4) scale. The sample was taken in six universities from Chile and Spain.ResultsWe found consistent results indicating that stigma varies across university programmes. Medical and nursing students showed more negative attitudes than psychology and occupational therapy students in several stigma-related themes: recovery, dangerousness, uncomfortability, disclosure, and discriminatory behaviour.ConclusionsOur study presents a relevant description of the attitudes of each university programme for education against stigma in the formative years. Results show that the biomedical understanding of mental disorders can have negative effects on attitudes, and that education based on the psychosocial model allows a more holistic view of the person over the diagnosis
- …