37 research outputs found

    Expressionsregulation der Sac1 Lipidphosphatase in Saccharomyces cerevisiae

    Get PDF
    Phosphoinositide sind wichtige LipidsignalmolekĂŒle, die an der Regulation vieler intrazellulĂ€rer VorgĂ€nge beteiligt sind. Sie werden durch das Zusammenspiel von spezifischen Lipidkinasen und Lipidphosphatasen reguliert, die selbst einer genauen Regulation unterliegen mĂŒssen. Die Lipidphosphatase Sac1p in Hefe kann PtdIns(4)P-Signale an Membranen des ER und Golgi-Apparates hydrolysieren. Dabei wird die rĂ€umliche Regulation und Koordination der katalytischen AktivitĂ€t von Sac1p durch einen Lokalisationswechsel zwischen ER und Golgi-Apparat gewĂ€hrleistet. Außerdem wurde beobachtet, dass eine Regulation auf transkriptioneller Ebene stattfindet. So waren zellulĂ€re Menge einer sac1- Variante mit reduzierter PhosphataseaktivitĂ€t im Vergleich zu Wildtyp-Sac1p erhöht. Im Rahmen dieser Arbeit wurde die Expressionskontrolle von SAC1 durch genetische und funktionelle Analysen untersucht. Mit Hilfe von verkĂŒrzten und mutierten Promotorkonstrukten konnte eine Region innerhalb des SAC1-Promotors identifiziert werden, die fĂŒr die Transkription essentiell ist. So wurde gezeigt, dass die Deletion der Basen –100 bis –92 stromaufwĂ€rts des SAC1-Startcodons innerhalb des GesamtlĂ€ngepromotors zum Verlust der transkriptionellen AktivitĂ€t fĂŒhrt. Die Sequenz dieser essentiellen Region lautet ACCAGAGGT. Die jeweils Ă€ußeren drei Basen bilden dabei eine palindromartige Struktur aus. Mit Gelshiftanalysen konnte nachgewiesen werden, dass an die intakte Basensequenz ein bisher unbekannter Proteinfaktor bindet. Werden die jeweils Ă€ußeren drei Basenpaare deletiert, wird die Bindung des Proteinfaktors weitestgehend unterbunden. Wurden Oligonukleotide, die die spezifische Sequenz enthielten, an CNBr-Sepahrose gekoppelt, so war man in der Lage, spezifisch bindende Proteine in solchen Mengen aufzureinigen, die massenspektrometrischen Sequenzanalysen genĂŒgten. Jedoch konnte der bindende Faktor nicht identifiziert werden. ZusĂ€tzlich konnte gezeigt werden, dass der SAC1-Promotor inositolsensitiv ist. Unter Inositolmangelbedingungen war die PromotoraktivitĂ€t erhöht, InositolĂŒberschuss hatte eine Erniedrigung der AktivitĂ€t zur Folge. Zusammen mit dem bekannten PhĂ€notpyen der Inositolauxotrophie einer sac1 D-Mutante, stellt dies einen Hinweis dar, dass die Expressionsregulation von SAC1 mit dem Lipidstoffwechsel gekoppelt ist. Die Analyse der SAC1-Expression im Zusammenhang mit der Regulation von Genen der Inositolbiosynthese hat jedoch ergeben, dass Inositol nicht das direkte Signal ist, welches die PromotoraktivitĂ€t reguliert. Es konnte ebenfalls demonstriert werden, dass die AktivitĂ€t des SAC1-Promotors mit der intrazellulĂ€ren PtdIns(4)P-Menge korreliert. So war der Promotor in sac1 D-Zellen, die durch zehnfach erhöhte PtdIns(4)P-Mengen charakterisiert wurden, deutlich aktiver. Wurden die sac1 D-Zellen mit temperatursensitiven Lipidkinasemutanten kombiniert, so sank die AktivitĂ€t des Promtors entsprechend der Reduktion von intrazellulĂ€rem PtdIns(4)P. Damit war ein Hinweis gefunden, dass intrazellulĂ€res PtdIns(4)P das Signal sein könnte, das die PromotoraktivitĂ€t von SAC1 steuert. Möglicherweise wird das Lipidsignal ĂŒber spezifische lipidbindende Proteine von der Membran in den Nukleus transportiert. Mit Hilfe von biotinylierten, PtdIns(4)P-enthaltenden Lioposomen konnte eine Methode entwickelt werden, die es erlaubt, nach PtdIns(4)P-interagierenden Faktoren zu suchen. Diese Methode kann nicht nur fĂŒr die Charakterisierung der Bindeeigenschaften lipidbindender Proteine eingesetzt werden, sondern auch fĂŒr die Aufreinigung von Proteinmengen, die fĂŒr eine Detektion durch CoomassiefĂ€rbung ausreichend sind. Durch weitere Aufskalierungen sollte man in der Lage sein, auch weniger abundante Proteine zu identifizieren, die spezifisch mit PtdIns(4)P interagieren können

    Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1

    Get PDF
    When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I–mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor–induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery

    Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown.</p> <p>Results</p> <p>Here we show that the expression of lipid phosphatase Sac1p in the yeast <it>Saccharomyces cerevisiae </it>is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4)P) concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the <it>SAC1 </it>gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR) of <it>SAC1 </it>that is responsible for PI(4)P-mediated regulation. Upregulation of <it>SAC1 </it>promoter activity correlates with elevated levels of Sac1 protein levels.</p> <p>Conclusion</p> <p>Regulation of Sac1p expression via the concentration of its major substrate PI(4)P ensures proper maintenance of compartment-specific pools of PI(4)P.</p

    Local erythropoietin and endothelial progenitor cells improve regional cardiac function in acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expanded endothelial progenitor cells (eEPC) improve global left ventricular function in experimental myocardial infarction (MI). Erythropoietin beta (EPO) applied together with eEPC may improve regional myocardial function even further by anti-apoptotic and cardioprotective effects. Aim of this study was to evaluate intramyocardial application of eEPCs and EPO as compared to eEPCs or EPO alone in experimental MI.</p> <p>Methods and Results</p> <p>In vitro experiments revealed that EPO dosed-dependently decreased eEPC and leukocyte apoptosis. Moreover, in the presence of EPO mRNA expression in eEPC of proangiogenic and proinflammatory mediators measured by TaqMan PCR was enhanced. Experimental MI was induced by ligation and reperfusion of the left anterior descending coronary artery of nude rats (n = 8-9). After myocardial transplantation of eEPC and EPO CD68+ leukocyte count and vessel density were enhanced in the border zone of the infarct area. Moreover, apoptosis of transplanted CD31 + TUNEL + eEPC was decreased as compared to transplantation of eEPCs alone. Regional wall motion of the left ventricle was measured using Magnetic Resonance Imaging. After injection of eEPC in the presence of EPO regional wall motion significantly improved as compared to injection of eEPCs or EPO alone.</p> <p>Conclusion</p> <p>Intramyocardial transplantation of eEPC in the presence of EPO during experimental MI improves regional wall motion. This was associated with an increased local inflammation, vasculogenesis and survival of the transplanted cells. Local application of EPO in addition to cell therapy may prove beneficial in myocardial remodeling.</p

    On the Efficient Construction of Rectangular Grids from Given Data Points

    No full text
    Many combinatorial optimization problems provide their data in an input space with a given dimension. Genetic algorithms for those problems can benefit by using this natural dimension for the encoding of the individuals rather than a traditional one-dimensional bit string. This is true in particular if each data point of the problem corresponds to a bit or a group of bits of the chromosome. We develop different methods for constructing a rectangular grid of near-optimal dimension for given data points, providing a natural encoding of the individuals. Our algorithms are tested with some large TSP instances

    Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate"</p><p>http://www.biomedcentral.com/1471-2199/9/16</p><p>BMC Molecular Biology 2008;9():16-16.</p><p>Published online 28 Jan 2008</p><p>PMCID:PMC2258305.</p><p></p> 5'-UTR of ranging from bp -500 to -1 was fused to the open reading frame of GFP. Expression from the GFP reporter constructs. Wild-type and Δ yeast cells transformed with a -based plasmid containing the (-500/-1)-GFP fusion construct were grown to early log phase at 30°C. Cell extracts were analyzed by SDS-PAGE and immunoblotting using anti-GFP and anti-glucose-6-phosphate dehydrogenase (Zwf1p) antibodies. Quantitation of relative GFP expression levels in Δ and strain backgrounds. Data are from at least three independent experiments (+/-SE)

    Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate"</p><p>http://www.biomedcentral.com/1471-2199/9/16</p><p>BMC Molecular Biology 2008;9():16-16.</p><p>Published online 28 Jan 2008</p><p>PMCID:PMC2258305.</p><p></p> GFP in a -based vector. The plasmids were introduced into a wild-type strain background and promoter activity determined by measurement of relative GFP expression levels in cell extracts. Expression of the GFP reporter. Wild-type and Δ yeast cells transformed with a -based plasmid containing the (-100/-1)-GFP fusion construct were grown to early log phase at 30°C. Cell extracts were analyzed by SDS-PAGE and immunoblotting using anti-GFP and anti-glucose-6-phosphate dehydrogenase (Zwf1p) antibodies. Quantitation of relative GFP expression levels. Data are from at least three independent experiments (+/-SE)
    corecore