11 research outputs found

    Cost Optimization and Technology Enablement COTSAT-1

    Get PDF
    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The space industry was a hot bed of innovation and development at its birth. Many new technologies were developed for and first demonstrated in space. In the recent past this trend has reversed with most of the new technology funding and research being driven by the private industry. Most of the recent advances in spaceflight hardware have come from the cell phone industry with a lag of about 10 to 15 years from lab demonstration to in space usage. NASA has started a project designed to address this problem. The prototype spacecraft known as Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) and CheapSat work to reduce these issues. This paper highlights the approach taken by NASA Ames Research center to achieve significant subsystem cost reductions. The COSTAT-1 research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing spacecraft. The COTSAT-1 team demonstrated building a fully functional spacecraft for 500Kpartsand500K parts and 2.0M labor. The COTSAT-1 system, including a selected science payload, is described within this paper. Many of the advancements identified in the process of cost reduction can be attributed to the use of a one-atmosphere pressurized structure to house the spacecraft components. By using COTS hardware, the spacecraft program can utilize investments already made by commercial vendors. This ambitious project development philosophy/cycle has yielded the COTSAT-1 flight hardware. This paper highlights the advancements of the COTSAT-1 spacecraft leading to the delivery of the current flight hardware that is now located at NASA Ames Research Center. This paper also addresses the plans for COTSAT-2

    The TOLIMAN space telescope

    Get PDF
    The TOLIMAN space telescope is a low-cost, agile mission concept dedicated to astrometric detection of exoplanets in the near-solar environment, and particularly targeting the Alpha Cen system. Although successful discovery technologies are now populating exoplanetary catalogs into the thousands, contemporary astronomy is still poorly equipped to answer the basic question of whether there are any rocky planets orbiting any particular star system. Toliman will make a first study of stars within 10 PC of the sun by deploying an innovative optical and signal encoding architecture that leverages the most promising technology to deliver data on this critical stellar sample: high precision astrometric monitoring. Here we present results from the Foundational Mission Study, jointly funded by the Breakthrough Prize Foundation and the University of Sydney which has translated innovative underlying design principles into error budgets and potential spacecraft systems designs

    NEAR: New Earths in the Alpha Cen Region (bringing VISIR as a "visiting instrument" to ESO-VLT-UT4)

    Get PDF
    By adding a dedicated coronagraph, ESO in collaboration with the Breakthrough Initiatives, modifies the Very Large Telescope mid-IR imager (VISIR) to further boost the high dynamic range imaging capability this instru- ment has. After the VISIR upgrade in 2012, where coronagraphic masks were first added to VISIR, it became evident that coronagraphy at a ground-based 8m-class telescope critically needs adaptive optics, even at wavelengths as long as 10μm. For VISIR, a work-horse observatory facility instrument in normal operations, this is ”easiest” achieved by bringing VISIR as a visiting instrument to the ESO-VLT-UT4 having an adaptive M2. This “visit” enables a meaningful search for Earth-like planets in the habitable zone around both α-Cen1,2. Meaningful here means, achieving a contrast of ≈ 10^(-6) within ≈ 0.8arcsec from the star while maintaining basically the normal sensitivity of VISIR. This should allow to detect a planet twice the diameter of Earth. Key components will be a diffractive coronagraphic mask, the annular groove phase mask (AGPM), optimized for the most sensitive spectral band-pass in the N-band, complemented by a sophisticated apodizer at the level of the Lyot stop. For VISIR noise filtering based on fast chopping is required. A novel internal chopper system will be integrated into the cryostat. This chopper is based on the standard technique from early radio astronomy, conceived by the microwave pioneer Robert Dicke in 1946, which was instrumental for the discovery of the 3K radio background

    The NASA ARC Small Spacecraft Division

    Get PDF
    As the utility and usefulness of small spacecraft are being demonstrated in orbit by NASA and other organizations and academia, it is becoming clear that small spacecraft can and should have a large roll in the exploration of the solar system. The various benefits associated with small platforms include low cost, frequent missions, and by virtue of those features, repeatable and evolutionary missions. This paper describes the motivation for establishing a dedicated function within the NASA Ames Research Center to pursue and implement multiple missions with small, inexpensive spacecraft, and outlines some future trends and directions of the Small Spacecraft Division within the context of science and exploration

    Panel Discussion

    Get PDF
    An interactive discussion forum on the technology needs of the small satellite sector in the coming decade, with specific emphasis on both bus and payload related technologies that are enabling across a broad mission spectrum. Panelists will emphasize game-changing technologies that provide a quantum improvement in the performance vs. cost trade-off, especially those that may be achievable in the near term (years). Panel Members: Mr. Pete Klupar, Director of Engineering, NASA Ames Research Center Dr. Peter Wegner, Director, Operationally Responsive Space Office Dr. John Paffett, Chief Executive Officer, Surrey Satellite Technology Ltd. - U.S

    Small Spacecraft Mission Concepts to Achieve Lunar Science and Exploration Goals

    Get PDF
    NASA’s Vision for Space Exploration calls for a return to the Moon with both robotic spacecraft and human explorers in the coming decades. Both scientific and exploration-related goals can be achieved using a small spacecraft platform with relatively low cost and rapid development time. We report on mission concepts within five investigation themes and provide traceability to proposed instrumentation and measurement objectives. Specific themes addressed here include 1) Water, 2) Radiation Shielding, 3) Biologic Effects of the Lunar Environment, 4) Dust and Regolith Characterization, and 5) Enabling Lunar Astrophysics

    Imaging low-mass planets within the habitable zone of α Centauri

    No full text
    Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, alpha Centauri. Based on 75-80% of the best quality images from 100h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes. Imaging of low-mass exoplanets can be achieved once the thermal background in the mid-infrared (MIR) wavelengths can be mitigated. Here, the authors present a ground-based MIR observing approach enabling imaging low-mass temperate exoplanets around nearby stars

    SoilTemp: A global database of near‐surface temperature

    Get PDF
    Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes
    corecore