25 research outputs found

    Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function

    Get PDF
    DNA methylation (DNAm) plays a determining role in neural cell fate and provides a molecular link between early-life stress and neuropsychiatric disease. Preterm birth is a profound environmental stressor that is closely associated with alterations in connectivity of neural systems and long-term neuropsychiatric impairment. The aims of this study were to examine the relationship between preterm birth and DNAm, and to investigate factors that contribute to variance in DNAm. DNA was collected from preterm infants (birth<33 weeks gestation) and healthy controls (birth>37 weeks), and a genome-wide analysis of DNAm was performed; diffusion magnetic resonance imaging (dMRI) data were acquired from the preterm group. The major fasciculi were segmented, and fractional anisotropy, mean diffusivity and tract shape were calculated. Principal components (PC) analysis was used to investigate the contribution of MRI features and clinical variables to variance in DNAm. Differential methylation was found within 25 gene bodies and 58 promoters of protein-coding genes in preterm infants compared with controls; 10 of these have neural functions. Differences detected in the array were validated with pyrosequencing. Ninety-five percent of the variance in DNAm in preterm infants was explained by 23 PCs; corticospinal tract shape associated with 6th PC, and gender and early nutritional exposure associated with the 7th PC. Preterm birth is associated with alterations in the methylome at sites that influence neural development and function. Differential methylation analysis has identified several promising candidate genes for understanding the genetic/epigenetic basis of preterm brain injury

    The Triggering Receptor Expressed on Myeloid Cells 2 Inhibits Complement Component 1q Effector Mechanisms and Exerts Detrimental Effects during Pneumococcal Pneumonia

    Get PDF
    Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2(-/-) AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2(-/-) mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs

    Genetic screening for NiemannPick disease type C in adults with neurological and psychiatric symptoms: findings from the ZOOM study

    Get PDF
    Niemann-Pick disease type C (NP-C) is a rare, autosomal-recessive, progressive neurological disease caused by mutations in either the NPC1 gene (in 95% of cases) or the NPC2 gene. This observational, multicentre genetic screening study evaluated the frequency and phenotypes of NP-C in consecutive adult patients with neurological and psychiatric symptoms. Diagnostic testing for NP-C involved NPC1 and NPC2 exonic gene sequencing and gene dosage analysis. When available, results of filipin staining, plasma cholestane-3β,5α,6β-triol assays and measurements of relevant sphingolipids were also collected. NPC1 and NPC2 gene sequencing was completed in 250/256 patients from 30 psychiatric and neurological reference centres across the EU and USA [median (range) age 38 (18-90) years]. Three patients had a confirmed diagnosis of NP-C; two based on gene sequencing alone (two known causal disease alleles) and one based on gene sequencing and positive filipin staining. A further 12 patients displayed either single mutant NP-C alleles (8 with NPC1 mutations and 3 with NPC2 mutations) or a known causal disease mutation and an unclassified NPC1 allele variant (1 patient). Notably, high plasma cholestane-3β,5α,6β-triol levels were observed for all NP-C cases (n = 3). Overall, the frequency of NP-C patients in this study [1.2% (95% CI; 0.3%, 3.5%)] suggests that there may be an underdiagnosed pool of NP-C patients among adults who share common neurological and psychiatric symptoms
    corecore