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OPEN

ORIGINAL ARTICLE

Epigenomic profiling of preterm infants reveals DNA
methylation differences at sites associated with neural function
S Sparrow1, JR Manning2, J Cartier3, D Anblagan4, ME Bastin4, C Piyasena3, R Pataky1, EJ Moore1, SI Semple5, AG Wilkinson6, M Evans7,
AJ Drake3,8 and JP Boardman1,4,8

DNA methylation (DNAm) plays a determining role in neural cell fate and provides a molecular link between early-life stress and
neuropsychiatric disease. Preterm birth is a profound environmental stressor that is closely associated with alterations in
connectivity of neural systems and long-term neuropsychiatric impairment. The aims of this study were to examine the relationship
between preterm birth and DNAm, and to investigate factors that contribute to variance in DNAm. DNA was collected from preterm
infants (birtho33 weeks gestation) and healthy controls (birth437 weeks), and a genome-wide analysis of DNAm was performed;
diffusion magnetic resonance imaging (dMRI) data were acquired from the preterm group. The major fasciculi were segmented,
and fractional anisotropy, mean diffusivity and tract shape were calculated. Principal components (PC) analysis was used to
investigate the contribution of MRI features and clinical variables to variance in DNAm. Differential methylation was found within 25
gene bodies and 58 promoters of protein-coding genes in preterm infants compared with controls; 10 of these have neural
functions. Differences detected in the array were validated with pyrosequencing. Ninety-five percent of the variance in DNAm in
preterm infants was explained by 23 PCs; corticospinal tract shape associated with 6th PC, and gender and early nutritional
exposure associated with the 7th PC. Preterm birth is associated with alterations in the methylome at sites that influence neural
development and function. Differential methylation analysis has identified several promising candidate genes for understanding
the genetic/epigenetic basis of preterm brain injury.

Translational Psychiatry (2016) 6, e716; doi:10.1038/tp.2015.210; published online 19 January 2016

INTRODUCTION
Preterm birth affects 5–13% of newborns,1 and is a profound
early-life stressor that is closely associated with cerebral palsy,
cognitive impairment, autism spectrum disorder and psychiatric
disease.2–6 The prevalence of impairment is related to gestational
age at birth and to adverse exposures such as inflammation,
ischaemia, respiratory morbidity and sub-optimal nutrition,7

but the mechanisms underlying these associations are poorly
understood.
Epigenetic modification has a fundamental role in regulating

gene expression and determining neural cell fate, and DNA
methylation (DNAm) is one such modification that is highly
conserved across species.8 DNAm is dynamic during development,
including in the brain9 and this could provide a mechanism by
which environmental factors lead to disturbances of neural
development that underpin later impairment.10 DNAm mediates
gene–environment interactions between early-life stress and
several neuropsychiatric outcomes,11–14 but little is known about
DNAm in relation to brain development after preterm birth.
Although DNAm patterns are tissue specific, a number of recent

observations suggest consistency between peripheral tissues and
brain. First, DNAm profiles are altered consistently between
prefrontal cortex and T cells in a rhesus macaque model of
early-life stress.15 Second, the top enriched biological processes

from peripheral blood cells of adults with post-traumatic stress
disorder and early-life trauma concern central nervous system
development,12 which suggests considerable overlap between
tissues. Third, inter-individual variation tends to be consistent
across tissue types.16 Furthermore, sampling DNA from saliva
rather than blood is informative in brain DNAm studies because:
methylation profiles obtained from saliva show greater corre-
spondence with brain tissue extracts than those obtained from
blood;17 inherent properties of DNAm from buccal cells (greater
enrichment of DNaseI hypersensivity sites, histone modifications
and disease-associated single nucleotide polymorphisms (SNPs))
may make them a more favourable proxy tissue than blood for
epigenome-wide association studies of non-haematological
disease.18

Structural and diffusion magnetic resonance imaging (dMRI)
reveal a cerebral signature of preterm birth that includes reduced
connectivity of white matter tracts, focal tissue volume reduction
in deep grey matter nuclei and reduced cortical complexity.19–24

Specifically, fractional anisotropy (FA) and mean diffusivity (〈D〉)
derived from dMRI provide measures of tract integrity in the newborn
brain that have a predictable pattern of alteration in preterm
infants at term equivalent age (TEA).25–27 These biomarkers are
sensitive to genetic and environmental risk modulators for injury,
and can detect neuroprotective treatment effects.28–31
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Probabilistic neighbourhood tractography (PNT) is an automatic
segmentation technique, based on single seed point tractography,
that can identify the same fasciculus-of-interest across a group of
subjects by modelling how individual tracts compare with a
predefined reference tract in terms of length and shape.32,33 This
tract shape modelling is unique to PNT and allows not only
measurement of tract integrity parameters, such as tract-averaged
〈D〉 and FA, but also provides a metric, the absolute goodness-of-
fit of the segmented tract to the reference (R), which can be used
to quantify differences in tract shape between individuals. The
inclusion of anatomic information in dMRI models makes PNT
ideally suited to studies of genetic and epigenetic effects because
brain structure is heritable.34,35

In this study, we tested the hypotheses that the stress of
preterm birth leads to alterations in the methylome that are
apparent early in the newborn period, and variance in DNAm is
associated with dMRI parameters in major white matter tracts and
clinical risk factors for adverse outcome.

MATERIALS AND METHODS
Participants
The study was conducted according to the principles of the Declaration of
Helsinki, and ethical approval was obtained from the UK National Research
Ethics Service. Written parental informed consent was obtained.
The cohort consisted of two groups of neonates who received care at

the Royal Infirmary of Edinburgh between January 2012 and September
2014: (1) preterm neonates (defined as postmenstrual age (PMA) at birth
o32 completed weeks gestation); and control infants born at full term
(437 weeks PMA). Infants were not eligible if they had dysmorphic
features suggestive of a chromosomal abnormality that was confirmed by
karyotype, a congenital malformation or a congenital infection.

DNA extraction
The DNA OG-575 kit was used for sampling of saliva at TEA, defined as
38–42 weeks PMA (DNAGenotek, Ottawa, ON, Canada). DNA was extracted
using an alcohol precipitation technique as per manufacturer’s instruc-
tions, and was rehydrated in TE 0.5. Gel electrophoresis was used to qualify
DNA extraction and Qubit 2.0 Fluorometer was utilised for quantification of
DNA concentration (Invitrogen Life Sciences, Carlsbad, CA, USA).

DNAm analysis
DNAm analysis was performed at the Genetics Core of the Edinburgh
Clinical Research Facility (Edinburgh, UK). Bisulphite conversion of 500 ng
input DNA was carried out using the EZ DNAm Kit (Zymo Research,
Freiburg, Germany). Four microlitres of bisulphite-converted DNA was
processed using the Infinium HD Assay for Methylation (Illumina
Methylation 450k beadchip and Infinium chemistry (Illumina, San Diego,
CA, USA)). Each sample was interrogated on the arrays against 485 000
methylation sites. The arrays were imaged on the Illumina HiScan platform
and genotypes were called automatically using GenomeStudio Analysis
software version 2011.1 (Illumina). The data discussed in this publication have
been deposited in NCBI's Gene Expression Omnibus and are accessible
through GEO Series accession number GSE72120 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE72120).

MRI acquisition
The preterm infants underwent brain MRI at TEA. A Siemens MAGNETOM
Verio 3T MRI clinical scanner (Siemens Healthcare, Erlangen, Germany) and
12-channel phased-array head coil were used to acquire: T1-weighted
MPRAGE volume (~1 mm3 resolution), T2-weighted STIR (~0.9 mm3

resolution), T2-weighted FLAIR (~1 mm3 resolution) and dMRI (11 T2-
and 64 diffusion encoding direction (b= 750 s mm−2) single-shot spin-echo
echo planar imaging volumes with 2 mm isotropic voxels using a
prototype sequence). All examinations were supervised by a pediatrician
experienced in MRI procedures. Infants were examined in natural sleep and
pulse oximetry, temperature and electrocardiography data were mon-
itored throughout. Ear protection was used for each infant, comprising
earplugs placed in the external ear and neonatal earmuffs (MiniMuffs,
Natus Medical, San Carlos, CA, USA).

Methylation analysis
Data were processed with the RnBeads tool36 v 0.99.17, for processes
including data loading, pre-processing, normalisation and differential
methylation. The software was modified slightly to allow filtering of
problematic CpG loci identified by Chen et al.37

During pre-processing and using the Chen annotation, probes were
removed if their CpG loci overlapped with known SNPs from the 1000
Genomes Project (www.1000genomes.org), if a SNP occurred at the site of
single-base extension, or if the probe had been shown to be non-specific.
A further, smaller set of probes was removed where RnBeads’ iterative
‘GreedyCut’ algorithm identified a large number of unreliable measure-
ments across samples.
Normalisation was carried out using the beta mixture quantile dilation

method of Teschendorff et al.38 in which the differing distributions of Type
I and Type II probes is taken into consideration. This method had been
shown to perform well in comparison with other methods.39 Following
normalisation a batch correction was applied by use of ComBat40 to
account for the well-documented chip-wise batch effect of the Infinium
platform. Before downstream analyses, probes were removed if their target
sites occurred on sex chromosomes, or in non-CpG contexts.
Finally, differential methylation between term and preterm individuals

was assessed in gene bodies and promoters. RnBeads includes gene-level
annotations from Ensembl (www.ensembl.org; v77 for the version of
RnBeads used), and assigns promoters as the regions from 1.5 kb upstream
to 0.5 kb downstream of the transcription start site. Differentially
methylated positions were assessed with Limma,41 and aggregated for
genes and promoters using a generalisation of Fisher's method. The false
discovery rate (FDR)-corrected version of these aggregated region-level P-
values was used to select genes with significantly differentially methylated
regions (DMR) in bodies and/or promoters. Gene function annotation was
determined from the National Center for Biotechnology Information Gene
database (http://www.ncbi.nlm.nih.gov/gene/about-generif).

Validation by pyrosequencing
Pyrosequencing was used to validate DNAm at five selected genes that
showed differential methylation (Po0.05, FDR corrected) between
preterm infants at TEA and term controls: SLC7A5, SLC1A2, NPBWR1 and
QPRT. APOL1 was included in validation studies because of its functional
relevance and the significance value from the array was marginal (P= 0.05).
Bisulphite conversion was performed on 500 ng of genomic DNA with the
EZ DNAm kit (Zymo Research, Freiburg, Germany). The converted DNA was
amplified using the AmpliTaq Gold 360 kit (Applied Biosystems,
Warrington, UK) with primers mapping to target regions containing CpGs
assayed within the array. PCR primers were designed using PyroMark Assay
Design Software 2.0 (Qiagen; https://www.qiagen.com). Pyrosequencing
was performed using PyroMark Q24Gold reagents on a PyroMark Q24
Pyrosequencer (Qiagen) according to the manufacturer’s instructions. Data
were extracted and analysed using PyroMark Q24 1.0.10 software (Qiagen).
Background non-conversion levels were ~ 1–3%.

Diffusion MRI analysis
After conversion from DICOM to NIfTI-1 format, the dMRI data were
preprocessed using FSL tools (http://www.fmrib.ox.ac.uk/fsl) to extract the
brain and eliminate bulk patient motion and eddy current-induced artifacts
by registering the diffusion-weighted to the first T2-weighted echo planar
imaging volume of each subject. Using DTIFIT, 〈D〉 and FA volumes were
generated for every subject. From the underlying white matter con-
nectivity data, eight major white matter fasciculi (genu and splenium of
corpus callosum, left and right cingulum cingulate gyrus, left and right
corticospinal tracts (CST), and left and right inferior longitudinal
fasciculi) were identified using PNT optimised for neonatal dMRI. As
described in detail in the study by Anblagan et al.,33 this optimisation
principally involved using reference tracts created from a group of 20 term
controls.

Principal components analysis
Dimension reduction using principal components (PC) analysis was used to
inspect the dataset for signal in the methylation values that is related to
clinical variables and imaging features that are associated with neurode-
velopmental outcome (implemented in RnBeads). The clinical variables
tested were: gender, PMA at birth, PMA at scan, chorioamnionitis, exposure
to antenatal steroids, exposure to antenatal magnesium sulphate, number
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of days requiring parenteral nutrition and one/more episodes of late-onset
sepsis. The image features tested were tract-averaged FA, tract-averaged
〈D〉, and R for the eight major fasciculi. Properties of the dataset, which
included coordinates in the PC space, clinical variables and image features
were tested for association: if both properties contained categorical data, a
two-sided Fisher's exact test was used; if both properties contain numerical
data the correlation coefficient between the traits was computed, and a P-
value was estimated using permutation tests with 10,000 permutations;
and if property A was categorical and property B was numeric then the P-
value for association was calculated by comparing the values of B for the
different categories in A (two-sided Wilcoxon rank sum test when A defines
two categories, or a Kruskal–Wallis one-way analysis of variance if A
separates the samples into three or more categories. Because 33 variables
were tested for each PC, P-values were corrected using FDR, and values
o0.05 were considered significant.

Methylation as a function of clinical/imaging variables
Variables indicated as interesting via PCA were modelled directly using
Limma (http://bioinf.wehi.edu.au/limma/), with methylation as a function
of the variable in question.

RESULTS
Participants
We collected genomic DNA from 36 sex-matched preterm infants
(mean PMA at birth 28+3 weeks, range 23+2–32+6; mean birth
weight 1057 g, range 568–1460) at TEA (mean PMA 39+5 weeks,
range 38–42+4 weeks), and from 36 sex-matched controls born at
term (mean PMA 40+0, range 38+1–42+0). Seventy out of 72
mothers (97%) reported taking folic acid supplements around the
time of conception to at least 12 weeks gestation.
Of the preterm infants, 9 (25%) had intrauterine growth

restriction, 35 (97%) had been exposed to antenatal steroids,
20 (56%) had been exposed to antenatal MgSO4 and 11 (31%) had
histological chorioamnionitis. The mean duration requiring
parenteral nutrition after birth was 11 days (range 5–25).
Of the controls, none had intrauterine growth restriction, and

none was exposed to MgSO4 or steroids for threatened preterm
labour at any stage in pregnancy. None received parenteral
nutrition.
The mean (range) DNA yield was 45.9 ng μl− 1 (13.4–95.9) from

preterm infants and 36.35 ng μl− 1 (8.12–80) from term infants.

Association between DNAm and preterm birth
About 112,818 probes were removed after: first, pre-filtering
(probes on SNPs (n= 66,877); non-specific probes (n= 26,505);
sites with excess high detection P-values (n= 8,852)); and second,
post-filtering (non-CpG probes (n= 1130); and probes on sex
chromosomes (n= 9,454)). The remaining probes were used to
calculate aggregate P-values for DMRs in two categories: gene
bodies and promoters. About 87 genes were assigned as
differentially methylated by this approach (Po0.05, FDR cor-
rected, Supplementary Table 1), of which 25 were protein coding.
About 138 promoter regions were differentially methylated
(Supplementary Table 2), of which 58 related to protein-coding
genes. About 34 genes were present in both sets (partly due to
the overlapping gene and promoter definitions), of which 11 were
protein coding. Genes that encode proteins with neural function
and/or those with neuropsychiatric disease associations are listed
in Table 1.

Array validation
To validate the array findings, pyrosequencing was performed at
selected annotated CpG sites in five selected genes: SLC7A5,
SLC1A2, NPBWR1, APOL1 and QPRT. CpG sites in all five genes
which were identified on the array were confirmed as being
differentially methylated (Figure 1, Table 2). Because some assays
covered additional neighbouring CpGs, which were not also

interrogated in the array, it was possible to assess methylation
patterns in the nearby region. For SLC7A5, the assay covered three
upstream CpGs that all showed similar differences in methylation;
the SLC7A2 and APOL1 assays both captured a second neighbour-
ing downstream CpG that was also differentially methylated; and
the assay for NPBWR1 cg26205771 covered 1 upstream and 1
downstream CpG, and both showed similar methylation patterns.

Diffusion MRI analysis
Figure 2 shows illustrations of segmented tracts for a representa-
tive subject, while Table 3 presents descriptive statistics for 〈D〉, FA
and R in the eight major fasciculi identified from the dMRI data in
the preterm group using PNT.

Principal components analysis
Ninety-five percent of the variance in the preterm methylome was
explained by 23 components, with most variance explained by the
first two PCs (31.8% and 20.1%, respectively), (Supplementary
Table 3). In exploratory analyses, gender was associated with the
first PC (P= 0.0071); FA in the genu of the corpus callosum was
associated with the 5th PC (3.3% variance; P= 0.0061); right CST R
and chorioamnionitis were associated with the 6th PC (2.9%
variance; P= 0.0011 and P= 0.0053, respectively); and both gender
(P= 0.0016) duration of parenteral nutrition use (P= 0.0017) were
associated with the 7th PC (2.6% variance). After correction for
multiple tests, three associations remained: right CST R with the
6th PC (P= 0.036); and both gender (P= 0.028) and duration of
parenteral nutrition (P= 0.028) with the 7th PC. No variable was
significantly associated with any DMR when tested directly
(adjusted P-valueo0.05).

DISCUSSION
In a deeply phenotyped representative sample of newborns,
preterm birth was associated with significant alterations in the
methylome in 10 protein-coding genes whose products influence
neural cell function and are associated with behavioural traits/
neuropsychiatric disease. We found that specific risk modulators
of neurodevelopmental outcome after preterm birth (gender,
chorioamnionitis and early nutritional factors) explained a modest,
but significant proportion of the variance in DNAm. Furthermore,
there was an association between DNAm and white matter tract
tissue integrity and shape inferred from dMRI, suggesting that
epigenetic variation may contribute to the cerebral phenotype of
preterm birth.
Epigenome-wide association studies have provided new

insights into genes whose regulation pattern varies in the context
of child abuse, post-traumatic stress disorder, schizophrenia and
autism spectrum disorder,12,64,65 but to our knowledge this is the
first epigenome-wide association studies in preterm infants and
healthy controls to identify differential methylation at loci that
influence neural development. The magnitude of the DNAm
differences between preterm and term infants varied between
and within genes; however, in support of a potential biological
role for these changes, differential methylation was identified at
multiple CpGs on the array for most loci. Pyrosequencing analysis
for all genes selected for validation confirmed the differences at
individual CpGs seen on the array and also identified additional
differentially methylated neighbouring CpGs, suggesting that
preterm birth associates with widespread effects on DNAm at
these loci. For the majority of these genes, differential DNAm was
identified in the gene promoter, although for LRG1 and SLC7A5
differential methylation also extended into the gene body. In
general, DNAm at DMRs has a negative correlation with gene
expression, with recent studies reporting that this correlation is
stronger not only for CpGs close to the transcription start site but
also for intragenic DMRs, which do not necessarily mark intragenic
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CpG islands or CGI shores and may instead represent functional
elements.66

A particularly large number of differentially methylated CpGs
were identified in two members of the solute transporter family of
membrane transport proteins, SLC7A5 and SLC1A2. In preterm
infants, a significant reduction (~10%) in DNAm was seen at
multiple CpGs in the SLC7A5 promoter and gene body on the
array, and more were identified on pyrosequencing. SLC7A5 (also

known as LAT1) is a member of the solute transporter family of
membrane transport proteins and is involved in the transport of
large amino acids, including methionine, across the blood–brain
barrier.67 Methionine is a key component of S-adenosylmethio-
nine, the major methyl donor and very recent data suggests that
SLC7A5 can act as an indirect regulator of the epigenome, at
least in terms of histone modification through effects on the
availability of methionine and the subsequent availability of

Table 2. Pyrosequencing results for 5 genes (13 CpG sites) that showed differential methylation between groups in the array

Gene symbol CpG site Term mean % methylation (s.d.) Preterm mean % methylation (s.d.) % Difference (term–preterm) P-value

QPRT cg06453916 11.4 (1.1) 12.5 (1.5) − 1.1 1.24E− 03
SLC7A5 − 45 77.2 (7.4) 68.9 (8.8) 8.3 8.30E− 04

− 39 60.1 (8.2) 50.7 (8.9) 9.4 3.81E− 04
− 23 80.0 (5.9) 71.0 (10.9) 9.1 7.68E− 04

cg05834639 36.6 (7.2) 28.6 (8.6) 8.1 8.74E− 04
SLC1A2 cg25963980 31.2 (4.9) 25.7 (4.65) 5.5 5.94E− 06

+10 41.2 (5.0) 34.4 (6.0) 6.8 2.43E− 06
APOL1 cg36649144 29.5 (6.8) 24.3 (11.9) 5.2 0.0396

+9 14.6 (3.6) 11.5 (5.8) 3.14 0.0159
NPBWR1 cg07629017 6.0 (2.8) 4.74 (1.3) 1.26 0.0195
NPBWR1 − 5 64.5 (7.5) 56.5 (10.3) 8.0 4.11E− 04

cg26205771 55.6 (7.1) 48.1 (8.1) 7.5 1.00E− 04
+4 58.4 (8.6) 50.0 (10.4) 8.4 4.57E− 04

Positions of additional cytosines covered by pyrosequencing assays but which are not present on the array are given relative to the annotated CpG from
the array.

Figure 1. Differential methylation between preterm infants at term equivalent age and healthy infants born at term at CpG sites in protein-
coding genes with neural function identified in the array (Po0.05, corrected).
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S-adenosylmethionine.68 SLC1A2 (also known as EAAT2, GLT-1) is
predominantly expressed in astrocytes but is also expressed by
oligodendroglia and macrophages, and on neurons during
development. It has a role for clearing glutamate throughout
the neuroaxis and can be both transcriptionally and post-
transcriptionally regulated.44 The expression of SLC1A2 is reported
to be developmentally regulated, particularly at the window of
peak vulnerability for the development of periventricular
leukomalacia.69,70

The prevailing form of preterm brain injury is diffuse and
involves multiple cell lines (reviewed by Back and Miller71). The
pathogenesis includes death of pre-myelinating oligodendrocytes
(pre-OLs) because of vulnerability to inflammatory mediators,
reactive oxygen and nitrogen species, and glutamate excitotoxi-
city. This is followed by defective pre-OL regeneration and repair,
leading to hypomyelination. In pre-clinical and human post-
mortem studies the diffuse form of white matter injury coincides
with enrichment of reactive glia (activated microglia/macrophages
and reactive astrocytes) that inhibit the maturation of pre-OLs to
myelin-forming oligodendrocytes. The neuronal population is not
thought to degenerate under conditions that generate pre-OL loss
(outside the context of tissue necrosis and cystic periventricular
leucomalacia), but rather there is a dysmaturation response
characterized by aberrant dendritic arborisation, disturbances in
synaptic activity and reduced spine density. The functional profiles
of the 10 genes that we found to be differentially methylated in
preterm infants include neuronal and glial signalling,

neurotransmission, apoptosis and cellular energetics. Our findings
focus attention on the role of these genes in mediating injury and
regeneration/repair processes after preterm birth, and their
candidacy is further strengthened by the neuropsychiatric disease
associations in later life (Table 1).
PCs analysis was used to explore whether dMRI measures in the

major white matter fasciclui or clinical risk factors contributed to
structure in the methylation data of the preterm group. After
correction for multiple tests and exclusion of probes on sex
chromosomes, a small proportion of the variance was explained
by the shape of CST, which was associated with the 6th principal
component (3.3% of variance); and of the clinical factors tested,
gender and number of days requiring parenteral nutrition, both
associated with the 7th principal component (2.9% of variance).
However, none of these three variables was significantly
associated with any DMR when tested directly, which indicates
that if an effect is present, it is subtle and distributed over
many loci.
We sampled the methylome at a single time point chosen to

reflect the allostatic load of preterm birth and neonatal intensive
care among children who survive to hospital discharge, but this
leaves uncertainty about the temporal cues for epigenetic
modification in the perinatal period. A recent study of DNAm in
umbilical cord blood of 11 preterm infants and 11 term controls
demonstrated 20 DMRs between the groups, including loci in 3
genes that are involved with neuronal development: PPT2,
GABBR1, PLEKHB1.72 We did not identify DMRs in these genes,

Figure 2. Illustration of segmented tracts overlaid on FA maps. Top row: genu (left) and splenium (right) of corpus callosum. Bottom row (right
to left): left CCG, right CST and right ILF. CCG, cingulum cingulate gyrus; CST, corticospinal tract; FA, fractional anisotropy; ILF, inferior
longitudinal fasciculus.

Table 3. Mean (s.d.) of tract-averaged FA and 〈D〉, and median (IQR/2) values of R for each major fasciculus

Genu Splenium Right CST Left CST Right CCG Left CCG Right ILF Left ILF

FA 0.20 (0.04) 0.26 (0.04) 0.27 (0.03) 0.28 (0.04) 0.20 (0.03) 0.19 (0.03) 0.22 (0.03) 0.19 (0.03)
〈D〉 (s.d.)/x10-3 mm2 s− 1 1.497 (0.075) 1.586 (0.162) 1.192 (0.077) 1.240 (0.065) 1.375 (0.186) 1.365 (0.067) 1.664 (0.207) 1.685 (0.210)
R (IQR/2) − 4.81 (2.27) − 7.73 (4.36) − 2.66 (1.41) − 3.30 (1.71) − 3.21 (2.44) − 2.78 (3.37) − 3.07 (2.67) −0.97 (1.78)

Abbreviations: CCG, cingulum cingulate gyrus; CST, corticospinal tract; FA, fractional anisotropy; ILF, inferior longitudinal fasciculus; IQR, interquartile range.
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which may be explained by differences in study population,
timing of sampling or tissue-type sampled. A multiple sampling
design that includes parental samples, placental tissue, cord blood
and extends across the life-course would be required to
investigate the relative contributions of in utero and postnatal
exposures to changes in DNAm, and the extent to which preterm
birth leaves a legacy on the methylome.73

In conclusion, these novel data show that the profound early-
life stress of preterm birth is associated with differential
methylation at sites in several protein-coding genes. The analysis
of differential methylation has identified provide promising
candidate genes for understanding genetic influences on brain
development after preterm birth.
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