296 research outputs found

    Modelling Eco-Driving Support System for Microscopic Traffic Simulation

    Get PDF
    Microscopic traffic simulation is an ideal tool for investigating the network level impacts of eco-driving in different networks and traffic conditions, under varying penetration rates and driver compliance rates. The reliability of the traffic simulation results however rely on the accurate representation of the simulation of the driver support system and the response of the driver to the eco-driving advice, as well as on a realistic modelling and calibration of the driver’s behaviour. The state-of-the-art microscopic traffic simulation models however exclude detailed modelling of the driver response to eco-driver support systems. This paper fills in this research gap by presenting a framework for extending state-of-the-art traffic simulation models with sub models for drivers’ compliance to advice from an advisory eco-driving support systems. The developed simulation framework includes among others a model of driver’s compliance with the advice given by the system, a gear shifting model and a simplified model for estimating vehicles maximum possible acceleration. Data from field operational tests with a full advisory eco-driving system developed within the ecoDriver project was used to calibrate the developed compliance models. A set of verification simulations used to illustrate the effect of the combination of the ecoDriver system and drivers’ compliance to the advices are also presented

    25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity

    Get PDF
    We report on the spectral properties of a diode laser with a tunable external cavity in integrated optics. Even though the external cavity is short compared to other small-bandwidth external cavity lasers, the spectral bandwidth of this tunable laser is as small as 25 kHz (FWHM), at a side-mode suppression ratio (SMSR) of 50 dB. Our laser is also able to access preset wavelengths in as little as 200 us and able to tune over the full telecom C-band (1530 nm - 1565 nm).Comment: 8 pages, 7 figure

    Photoemission time-delay measurements and calculations close to the 3s ionization minimum in Ar

    Get PDF
    We present experimental measurements and theoretical calculations of photoionization time delays from the 3s3s and 3p3p shells in Ar in the photon energy range of 32-42 eV. The experimental measurements are performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework of the random phase approximation with exchange (RPAE). The connection between single-photon ionization and the two-color two-photon ionization process used in the measurement is established using the recently developed asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the theoretical and experimental results especially in the region where strong intershell correlations in the 3s to kp channel lead to an induced "Cooper" minimum in the 3s ionization cross-section.Comment: submitted to PR

    Altered hippocampal morphology in unmedicated patients with major depressive illness

    Get PDF
    Despite converging evidence that major depressive illness is associated with both memory impairment and hippocampal pathology, findings vary widely across studies and it is not known whether these changes are regionally specific. In the present study we acquired brain MRIs (magnetic resonance images) from 31 unmedicated patients with MDD (major depressive disorder; mean age 39.2±11.9 years; 77% female) and 31 demographically comparable controls. Three-dimensional parametric mesh models were created to examine localized alterations of hippocampal morphology. Although global volumes did not differ between groups, statistical mapping results revealed that in MDD patients, more severe depressive symptoms were associated with greater left hippocampal atrophy, particularly in CA1 (cornu ammonis 1) subfields and the subiculum. However, previous treatment with atypical antipsychotics was associated with a trend towards larger left hippocampal volume. Our findings suggest effects of illness severity on hippocampal size, as well as a possible effect of past history of atypical antipsychotic treatment, which may reflect prolonged neuroprotective effects. This possibility awaits confirmation in longitudinal studies

    Interpreting Attoclock Measurements of Tunnelling Times

    Full text link
    Resolving in time the dynamics of light absorption by atoms and molecules, and the electronic rearrangement this induces, is among the most challenging goals of attosecond spectroscopy. The attoclock is an elegant approach to this problem, which encodes ionization times in the strong-field regime. However, the accurate reconstruction of these times from experimental data presents a formidable theoretical challenge. Here, we solve this problem by combining analytical theory with ab-initio numerical simulations. We apply our theory to numerical attoclock experiments on the hydrogen atom to extract ionization time delays and analyse their nature. Strong field ionization is often viewed as optical tunnelling through the barrier created by the field and the core potential. We show that, in the hydrogen atom, optical tunnelling is instantaneous. By calibrating the attoclock using the hydrogen atom, our method opens the way to identify possible delays associated with multielectron dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe

    The nurse-coordinated cardiac care bridge transitional care programme: a randomised clinical trial

    Full text link
    Background: after hospitalisation for cardiac disease, older patients are at high risk of readmission and death. Objective: the cardiac care bridge (CCB) transitional care programme evaluated the impact of combining case management, disease management and home-based cardiac rehabilitation (CR) on hospital readmission and mortality. Design: single-blind, randomised clinical trial. Setting: the trial was conducted in six hospitals in the Netherlands between June 2017 and March 2020. Community-based nurses and physical therapists continued care post-discharge. Subjects: cardiac patients ≥ 70 years were eligible if they were at high risk of functional loss or if they had had an unplanned hospital admission in the previous 6 months. Methods: the intervention group received a comprehensive geriatric assessment-based integrated care plan, a face-to-face handover with the community nurse before discharge and follow-up home visits. The community nurse collaborated with a pharmacist and participants received home-based CR from a physical therapist. The primary composite outcome was first all-cause unplanned readmission or mortality at 6 months. Results: in total, 306 participants were included. Mean age was 82.4 (standard deviation 6.3), 58% had heart failure and 92% were acutely hospitalised. 67% of the intervention key-elements were delivered. The composite outcome incidence was 54.2% (83/153) in the intervention group and 47.7% (73/153) in the control group (risk differences 6.5% [95% confidence intervals, CI -4.7 to 18%], risk ratios 1.14 [95% CI 0.91-1.42], P = 0.253). The study was discontinued prematurely due to implementation activities in usual care. Conclusion: in high-risk older cardiac patients, the CCB programme did not reduce hospital readmission or mortality within 6 months. Trial registration: Netherlands Trial Register 6,316, https://www.trialregister.nl/trial/6169. Keywords: cardiac rehabilitation; cardiology; case management; disease management; transitional care

    Particle dynamics in the rising plume at Piccard Hydrothermal Field, Mid-Cayman Rise

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2762–2774, doi:10.1002/2015GC005831.Processes active in rising hydrothermal plumes, such as precipitation, particle aggregation, and biological growth, affect particle size distributions and can exert important influences on the biogeochemical impact of submarine venting of iron to the oceans and their sediments. However, observations to date of particle size distribution within these systems are both limited and conflicting. In a novel buoyant hydrothermal plume study at the recently discovered high-temperature (398°C) Piccard Hydrothermal Field, Mid-Cayman Rise, we report optical measurements of particle size distributions (PSDs). We describe the plume PSD in terms of a simple, power-law model commonly used in studies of upper and coastal ocean particle dynamics. Observed PSD slopes, derived from spectral beam attenuation and laser diffraction measurements, are among the highest found to date anywhere in the ocean and ranged from 2.9 to 8.5. Beam attenuation at 650 nm ranged from near zero to a rarely observed maximum of 192 m−1 at 3.5 m above the vent. We did not find large (>100 μm) particles that would settle rapidly to the sediments. Instead, beam attenuation was well-correlated to total iron, suggesting the first-order importance of particle dilution, rather than precipitation or dissolution, in the rising plume at Piccard. Our observations at Piccard caution against the assumption of rapid deposition of hydrothermal, particulate metal fluxes, and illustrate the need for more particle size and composition measurements across a broader range of sites, globally.This work was funded by the National Science Foundation (OCE-1029223; OCE-1061863), NASA (NNX09AB75G) and Woods Hole Oceanographic Institution's Deep Ocean Exploration Institute and Ocean Ridge Initiative. Ship time (R/V Falkor cruise FK008) was funded by the Schmidt Ocean Institute and M.L.E. was supported by a WHOI Postdoctoral Scholar fellowship.2016-02-2

    Genetics of brain fiber architecture and intellectual performance

    Get PDF
    The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a2 = 0.55, p = 0.04, left; a2 = 0.74, p = 0.006, right), bilateral parietal (a2 = 0.85, p < 0.001, left; a2 = 0.84, p < 0.001, right), and left occipital (a2 = 0.76, p = 0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto-occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p = 0.04 for FIQ and p = 0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition
    • …
    corecore