177 research outputs found

    Addendum to Finite-size effects on multibody neutrino exchange

    Get PDF
    The interaction energy of the neutrons due to massless neutrino exchange in a neutron star has recently been proved, using an effective theory, to be extremely small and infrared-safe. Our comment here is of conceptual order: two approaches to compute the total interaction energy density have recently been proposed. Here, we study the connection between these two approaches. From CP invariance, we argue that the resulting interaction energy has to be even in the parameter b=GFnn/2b=-G_F n_n /\sqrt{2}, which expresses the static neutrino potential created by a neutron medium of density nnn_n.Comment: Latex file (Revtex), 9 pages, 1 figure, one reference change

    Finite-size effects on multibody neutrino exchange

    Get PDF
    The effect of multibody massless neutrino exchanges between neutrons inside a finite-size neutron star is studied. We use an effective Lagrangian, which incorporates the effect of the neutrons on the neutrinos. Following Schwinger, it is shown that the total interaction energy density is computed by comparing the zero point energy of the neutrino sea with and without the star. It has already been shown that in an infinite-size star the total energy due to neutrino exchange vanishes exactly. The opposite claim that massless neutrino exchange would produce a huge energy is due to an improper summation of an infrared-divergent quantity. The same vanishing of the total energy has been proved exactly in the case of a finite star in a one-dimensional toy model. Here we study the three-dimensional case. We first consider the effect of a sharp star border, assumed to be a plane. We find that there is a non- vanishing of the zero point energy density difference between the inside and the outside due to the refraction index at the border and the consequent non-penetrating waves. An analytical and numerical calculation for the case of a spherical star with a sharp border confirms that the preceding border effect is the dominant one. The total result is shown to be infrared-safe, thus confirming that there is no need to assume a neutrino mass. The ultraviolet cut-offs, which correspond in some sense to the matching of the effective theory with the exact one, are discussed. Finally the energy due to long distance neutrino exchange is of the order of 1081013GeVperneutron10^{-8} -- 10^{-13} GeV per neutron, i.e. negligible with respect to the neutron mass density.Comment: Latex file (Revtex), 34 pages, 8 postscripted figure

    Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome

    Get PDF
    A positive family history, germline mutations in DNA mismatch repair genes, tumours with high microsatellite instability, and loss of mismatch repair protein expression are the hallmarks of hereditary non-polyposis colorectal cancer (Lynch syndrome). However, in ~10-15% of cases of suspected Lynch syndrome, no disease-causing mechanism can be detected

    High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability

    Get PDF
    High-level microsatellite instability (MSI-H) in colorectal cancer accounts for about 12% of colorectal cancers and is typically associated with a dense infiltration with cytotoxic CD8-positive lymphocytes. The role of regulatory T cells that may interfere with the host's antitumoural immune response in MSI-H colorectal cancers has not been analysed yet. Using an antibody directed against the regulatory T-cell marker transcription factor forkhead box P3 (FOXP3), regulatory T cells were examined in 70 colorectal cancers with known MSI status (MSI-H, n=37; microsatellite stable, n=33). In MSI-H colorectal cancers, we found a significantly higher intraepithelial infiltration with FOXP3-positive cells (median: 8.5 cells per 0.25 mm2 vs 3.1 cells per 0.25 mm2 in microsatellite stable, P<0.001), and a significantly elevated ratio of intraepithelial to stromal infiltration (0.05 vs 0.01 in microsatellite stable, P<0.001). CD8-positive cell counts were related positively to the number of FOXP3-positive cells (Spearman's ρ=0.56 and 0.55, respectively). Our results show that the elevated number of CD8-positive lymphocytes found in MSI-H colorectal cancers is paralleled by an enhanced infiltration with CD8-negative FOXP3-positive cells. These data suggest that FOXP3-positive cells may play a role in the regulation of the immune response directed against MSI-H colorectal cancers at the primary tumour site

    Potential of fecal microbiota for early-stage detection of colorectal cancer

    Get PDF
    Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host-microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism

    Survival of MUTYH-Associated Polyposis Patients With Colorectal Cancer and Matched Control Colorectal Cancer Patients

    Get PDF
    Background: MUTYH-associated polyposis is a recessively inherited disorder characterized by a lifetime risk of colorectal cancer that is up to 100%. Because specific histological and molecular genetic features of MUTYH-associated polyposis colorectal cancers might influence tumor behavior and patient survival, we compared survival between patients with MUTYH-associated polyposis colorectal cancer and matched control patients with colorectal cancer from the general population. Method:s In this retrospective multicenter cohort study from Europe, 147 patients with MUTYH-associated polyposis colorectal cancer were compared with 272 population-based control patients with colorectal cancer who were matched for country, age at diagnosis, year of diagnosis, stage, and subsite of colorectal cancer. Kaplan–Meier survival and Cox regression analyses were used to compare survival between patients with MUTYH-associated polyposis colorectal cancer and control patients with colorectal cancer. All statistical tests were two-sided. Results: Five-year survival for patients with MUTYH-associated polyposis colorectal cancer was 78% (95% confidence interval [CI] = 70% to 84%) and for control patients was 63% (95% CI = 56% to 69%) (log-rank test, P = .002). After adjustment for differences in age, stage, sex, subsite, country, and year of diagnosis, survival remained better for MUTYH-associated polyposis colorectal cancer patients than for control patients (hazard ratio of death = 0.48, 95% CI = 0.32 to 0.72). Conclusions: In a European study cohort, we found statistically significantly better survival for patients with MUTYH-associated polyposis colorectal cancer than for matched control patients with colorectal cancer

    (Phospho)proteomic profiling of microsatellite unstable CRC cells reveals alterations in nuclear signaling and cholesterol metabolism caused by frameshift mutation of NMD regulator UPF3A

    Get PDF
    DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells

    Is HLA type a possible cancer risk modifier in Lynch syndrome?

    Get PDF
    Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, ), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.Peer reviewe

    Genomic Characterization of Cholangiocarcinoma in Primary Sclerosing Cholangitis Reveals Therapeutic Opportunities

    Get PDF
    Background and Aims Lifetime risk of biliary tract cancer (BTC) in primary sclerosing cholangitis (PSC) may exceed 20%, and BTC is currently the leading cause of death in patients with PSC. To open new avenues for management, we aimed to delineate clinically relevant genomic and pathological features of a large panel of PSC-associated BTC (PSC-BTC). Approach and Results We analyzed formalin-fixed, paraffin-embedded tumor tissue from 186 patients with PSC-BTC from 11 centers in eight countries with all anatomical locations included. We performed tumor DNA sequencing at 42 clinically relevant genetic loci to detect mutations, translocations, and copy number variations, along with histomorphological and immunohistochemical characterization. Regardless of the anatomical localization, PSC-BTC exhibited a uniform molecular and histological characteristic similar to extrahepatic cholangiocarcinoma. We detected a high frequency of genomic alterations typical of extrahepatic cholangiocarcinoma, such asTP53(35.5%),KRAS(28.0%),CDKN2A(14.5%), andSMAD4(11.3%), as well as potentially druggable mutations (e.g.,HER2/ERBB2). We found a high frequency of nontypical/nonductal histomorphological subtypes (55.2%) and of the usually rare BTC precursor lesion, intraductal papillary neoplasia (18.3%). Conclusions Genomic alterations in PSC-BTC include a significant number of putative actionable therapeutic targets. Notably, PSC-BTC shows a distinct extrahepatic morpho-molecular phenotype, independent of the anatomical location of the tumor. These findings advance our understanding of PSC-associated cholangiocarcinogenesis and provide strong incentives for clinical trials to test genome-based personalized treatment strategies in PSC-BTC.Peer reviewe
    corecore