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Abstract

The effect of multibody massless neutrino exchanges between neutrons

inside a finite-size neutron star is studied. We use an effective Lagrangian,

which incorporates the effect of the neutrons on the neutrinos. Following

Schwinger, it is shown that the total interaction energy density is computed

by comparing the zero point energy of the neutrino sea with and without

the star. It has already been shown that in an infinite-size star the total

energy due to neutrino exchange vanishes exactly. The opposite claim that

massless neutrino exchange would produce a huge energy is due to an improper

summation of an infrared-divergent quantity. The same vanishing of the total

energy has been proved exactly in the case of a finite star in a one-dimensional

toy model. Here we study the three-dimensional case. We first consider the

effect of a sharp star border, assumed to be a plane. We find that there is a

non-vanishing of the zero point energy density difference between the inside

and the outside due to the refraction index at the border and the consequent

non-penetrating waves. An analytical and numerical calculation for the case

of a spherical star with a sharp border confirms that the preceding border
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effect is the dominant one. The total result is shown to be infrared-safe, thus

confirming that there is no need to assume a neutrino mass. The ultraviolet

cut-offs, which correspond in some sense to the matching of the effective

theory with the exact one, are discussed. Finally the energy due to long

distance neutrino exchange is of the order of 10−8–10−13 GeV per neutron,

i.e. negligible with respect to the neutron mass density.
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I. INTRODUCTION

The massless neutrino exchange interaction between neutrons, protons, etc., is a long-

range force [1]– [3]. In a previous work [4], the long-range interaction effects on the stability

of a neutron star due to multibody exchange of massless neutrinos have been studied. We

have shown that the total effect of the many-body forces of this type results in an infrared

well-behaved contribution to the energy density of the star and that it is negligible with

respect to the star mass density. This is in agreement with two recent non-perturbative

calculations done by Kachelriess [5] and by Kiers and Tytgat [6].

This work is in contradiction with the repeated claim by Fischbach [7] that, unless the

neutrino is massive, neutrino exchange renders a neutron star unstable, as the induced self-

energy exceeds the mass of the star because of the infrared effects associated to neutrino

exchange between four or more neutrons. In our opinion, the latter “catastrophic” result

is a consequence of summing up large infrared terms in perturbation outside the radius of

convergence of the perturbative series. The non-perturbative use of an effective Lagrangian

immediately gives the result without recourse to the perturbative series, and the result is

small.

Smirnov and Vissani [8], following the same method as in ref. [7], summing up multibody

exchange contributions order by order, showed that the 2-body contribution is damped by

the blocking effect of the neutrino sea [9]. They guessed that this damping would apply

to many-body contributions, and hence would reduce the catastrophic effect claimed by

Fischbach. In our previous work [4], we also considered the effect of the neutrino sea inside

the neutron star. This effect has been introduced in our non-perturbative calculation by

using Feynman propagators of neutrinos inside a dense medium, which incorporate the

condensate term. We noticed that this condensate is present, but in our opinion it is not the

most important of the effects that neutralize the catastrophic effect expected by Fischbach,

since it only brings a tiny change to the non-perturbatively summed interaction energy,

leaving unchanged our conclusion that the weak self-energy is infrared-safe.

We have also stressed in [4] that the neutrino condensate was related to the existence of

a border 1. This was demonstrated in the (1 + 1)-dimensional star in [10]: the blocking

effect, which implies the trapping of the neutrinos inside the star while the antineutrinos are

repelled from it, is a natural consequence of the existence of a border. Indeed a proper treat-

1 At that point, we should call the reader’s attention to a minor mistake that was made in the

previous calculation [4]: a pole was forgotten in the calculation of the weak self-energy, and its

contribution is exactly annihilated by the condensate’s, as shown in ref. [10]: the computation of

the self-energy gives zero when the forgotten pole is taken into account.
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ment of the effect of the border automatically incorporates the condensate contribution as a

consequence of the appropriate boundary conditions for the neutrino Feynman propagator

inside the star.

Since our treatment directly incorporates the neutrino sea effect and, on the other hand,

since we stick to our strategy of directly computing the total neutrino interaction energy

by using an effective Lagrangian, we have in a sense thus generalized the result of Smirnov

and Vissani [8] because our result holds in a non-perturbative way and accounts for all the

n-body contributions, while theirs holds for 2-body contributions only.

It has been objected [11] to our study [4] that we worked in an approximation where we

neglected the border of the neutron star. Our belief is that this simplifying hypothesis does

not change the fundamental result that the total effect of the multiple neutrino exchange to

the energy density of the star is not infrared-divergent.

Indeed, in [10] we have proved that, in (1 + 1) dimensions with borders, the result of

[4] for the infinite star without borders is kept unchanged: the net interaction energy due

to long-range neutrino exchange is exactly zero. This result was obtained by computing

Feynman vacuum loops with neutrino propagators derived from the effective Lagrangian,

which incorporates the neutron interaction. The latter propagators are not translational-

invariant, because of the star borders. We have found a physically simple explanation for

the vanishing of the net interaction energy. It relies on the fact that the negative energy

states, in the presence of the star and without the star, are in a one-to-one correspondence

and have exactly the same energy density. It results that the zero point energy is the same

with and without the star, for any density profile of the star.

The main goal of the present work is to follow on taking into account the finite-size and

border effects. Two main conclusions of ref. [10] are useful for the (3 + 1)-dimensional star:

i) the natural connection between the neutrino sea and the border, ii) the correct definition

of the zero-energy level of the Dirac sea.

From [10], we know that the zero-energy level of the Dirac sea has to be adjusted by

comparing the asymptotic behaviour of the wave functions far outside the star with the

free solutions in the absence of the star. From there, we know the correct iǫ prescription,

which has to be imposed in the propagators of the neutrinos in the presence of the star; we

could in principle compute the closed loops to get the vacuum energy density. However, this

approach is technically very difficult. A simpler method, the derivation of which is recalled

in section II, is to simply add the energy density of the negative energy solutions in the

presence of the star, minus the same in the absence of the star.

The vanishing of the neutrino exchange energy density in the star, found in the case of

an infinite star [4] and in (1 + 1) dimensions [10], which will be summarized in section III, is

not valid in (3 + 1) dimensions. The main reason for that will be illustrated in section IV by
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zooming to the border effect, i.e. considering a plane border in (3 + 1) dimensions. There

is a non-trivial refraction index that modifies the wave energy densities as they penetrate

the star. Some waves are forbidden to penetrate and this yelds the dominant contribution.

In section V, we perform analytical and numerical calculations, which take into ac-

count the curvature of the border and use a spherical star with a sharp border. We find

a very simple approximate formula for the zero point neutrino energy density in the star,

and demonstrate numerically the validity of this approximation. It results that indeed the

neutrino-induced energy density in the star does not vanish and is dominantly explained by

the above-mentioned border effect.

In any case, these non-vanishing neutrino exchange energy densities are all perfectly

regular in the infrared and do not present any resemblance to Fischbach’s effect. On the

other hand they are ultraviolet-singular. This is not unexpected since anyhow our effective

Lagrangian is only valid below some energy scale where the neutrons may be considered at

rest. In section VI, we also discuss in some detail the effect of decoherence for distances

larger than the neutrino mean-free path, which smoothes down the ultraviolet singularity.

We conclude that the stability of compact and dense objects such as a white dwarfs,

neutron stars, etc., are not affected by the neutrino exchange, even if neutrinos are massless.

II. GENERAL FORMALISM

In our calculations, we assume that the material of the neutron star is made exclusively of

neutrons, among which neutrinos are exchanged. The density-dependent corrections to the

neutrino self-energy result, at leading order, from the evaluation of Z0-exchange diagrams

between the neutrino and the neutrons in the medium, with the Z0 propagator evaluated at

zero momentum. The vacuum energy–momentum relation for massless fermions, E = |~q|,
where E is the energy and |~q| the magnitude of the momentum vector, does not hold in

a medium [12]. In our case, following refs. [13] and [10], they can be summarized by the

following dispersion relations:

Eν = q0 = |~q| + b for |~q| > |b|

Eν = −q0 =







|~q| − b ∀|~q| or ,

−|~q| − b for |~q| < |b|
(1)

where

b ≃ −
√

2GF nn/2 ∼ −0.2 10−7 GeV ∼ −10−7 fm−1, and nn ∼ 0.4 fm−3. (2)

In this paper we will use a star radius of

R ≃ 10 km, whence bR ≃ −1012 . (3)
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In eq. (1), b summarizes the zero-momentum transfer interaction of a massless neutrino with

any number of neutrons present in the media. Sensibly enough, it depends on the neutron

density which will be assumed to be constant for simplicity. When a neutrino sea is present

[9] 2, the neutrino condensate does not sensibly modify the value of b [5].

In the approximation where the neutrons are static, in the sense that they do not feel

the recoil from the scattering of the neutrinos, we can study the neutrino exchange through

the following effective Lagrangian as done in ref. [4]:

Leff = iν∂/ ν(r) − b νγ0ν θ(R− r) , (4)

where R is the radius of the neutron star.

The dispersion relations in eq. (1) show a displacement of the energy levels for the

different modes, a negative shift for neutrinos, and a positive one for antineutrinos; the

Dirac sea level is displaced. Would the neutron star occupy the whole Universe, it would

just mean a change of variables, with no physical consequence. The finite size of the star

changes the picture. Notice that b acts as the depth of a potential well, as it will be

considered in section V. It is repulsive for antineutrinos and attractive for neutrinos, which

then condense.

A traditional way to estimate the energy induced by neutrino exchange is to compute

first the exchange potentials involving 2, 3, 4, ... neutrons and then add their contributions

integrated over the neutron positions in the star. This is the way chosen by Fishbach et al.

[7] to compute the weak self-energy. The drawbacks of this method are the following:

i) The calculation turns out to be so difficult that many approximations are necessary.

ii) It assumes implicitly that every neutron may interact only once with neutrinos. iii) The

resulting interaction energy increases with the number n of neutrons involved grossly as

(bR)n ≃ 1012n and eventually becomes very large. In fact it would go to infinity if these

authors did not stop when n equals the number of neutrons of the star, as a consequence of

the above-mentioned unjustified assumption that a given neutron cannot interact more than

once. The large parameter bR (eq. (3)) reflects the infrared-sensible behaviour of each term

in the series. The main problem of this approach is that the summation is done outside the

2 b is given by:

b ≃ −
√

2GF (nn − nν)/2 − 8
√

2GF κ

3m2
Z

nν〈Eν〉 ,

where 〈Eν〉 is the average neutrino energy of the medium, defined in its rest frame, and nν the

neutrino density (nν ∼ 4 × 10−23 fm−3). These corrections to the fermion propagation would give

higher-order effects, and we disregard them in the present work.
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radius of convergence of the perturbative series, leading to an unacceptably huge result [7].

In ref. [4], we used instead a simpler and more direct method, which is non-perturbative and

based on an effective action. This method does not involve uncontrollable approximations,

it does incorporate automatically multiple interactions of one same neutron and finally it

leads to a totally reasonable result. This method is also followed in recent works, refs. [5]

and [6]. We should insist that, in this approach, there is no extra assumption added to the

problem.

In our work, we use the Schwinger tools [14] in order to compute the density of weak

interaction energy w(~x) due to the multibody neutrino exchange. It is given by the difference

between the energy density for a neutrino propagating in the “vacuum” defined by the

neutron star, |0̂〉, and the corresponding one for the real, matter-free, vacuum, |0〉:

w(~x) ≡ 〈0̂|H(~x)|0̂〉 − 〈0|H0(~x)|0〉 , (5)

where H(~x) and H0(~x) are the Hamiltonian densities of free and interacting neutrinos.

Concretely, to compute this weak interaction energy analytically, using [14], we can write it

as:

w(~x) = −i ∂
∂x0

tr
{

γ0

[

SF (x, y) − S
(0)
F (x, y)

]}

y→x
. (6)

The r.h.s. does not depend on x0 from time-translational invariance.

In diagrammatic formulation, the formal eq. (6) corresponds to the computation of the

difference of the diagrams in fig. 1.

q γ00

x
q γ00

x

FIG. 1. Schematic representation of w, eq. (6). The simple and double line represent the

neutrino propagator, in the matter-free vacuum and in the vacuum of the interacting medium,

respectively.

Using the notation
∑

∫

n±

≡
∑

jz,l,...

∫

dEn±

and from the definition
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SF (x, y)γ0 = θ(x0 − y0)
∑

∫

n+

Ψn+
(~x)Ψ†

n+
(~y) e−iEn+

(x0−y0)

− θ(y0 − x0)
∑

∫

n−

Ψn−
(~x)Ψ†

n−
(~y) e−iEn−

(x0−y0) , (7)

where En−
(En+

) is the negative (positive) energy of the eigenstate: HΨn±
= En±

Ψn±
, w(~x)

can be rewritten [14] as:

w(~x) =
∑

∫

n−

En−
Ψ†

n−
(~x)Ψn−

(~x) −
∑

∫

n−

E(0)
n−

Ψ†(0)
n−

(~x)Ψ(0)
n−

(~x) , (8)

where (0) refers to the matter-free vacuum and where we have taken the limit y0 → x0 with

y0 > x0. Taking the average of the limits y0 → x0 with y0 > x0 and y0 → x0 with y0 < x0,

as done in [6], would lead to:

wsym(~x) =
1

2

∑

∫

n−

En−
Ψ†

n−
(~x)Ψn−

(~x) − 1

2

∑

∫

n−

E(0)
n−

Ψ†(0)
n−

(~x)Ψ(0)
n−

(~x)

− 1

2

∑

∫

n+

En+
Ψ†

n+
(~x)Ψn+

(~x) +
1

2

∑

∫

n+

E(0)
n+

Ψ†(0)
n+

(~x)Ψ(0)
n+

(~x). (9)

The states are normalized in such a way that the two densities of states ρ(E), with and

without the star (free case), coincide in the asymptotic region |~x| → ∞ so that w(|~x| →
∞) = 0.

For later use let us just remind the reader that the same result (8) may be obtained from

the time Fourier-transformed propagator:

S̃F (~x, ~y, q0)γ0 = i
∑

∫ Ψn+
(~x)Ψ†

n+
(~y)

q0 −En+
+ iǫ

+
Ψn−

(~x)Ψ†
n−

(~y)

q0 − En−
− iǫ

. (10)

The result (8) is obtained from (10) by integrating −q0 SF (~x, ~y, q0)/(2π) on the complex

q0 plane, by closing the contour on the upper half. Obviously an appropriate choice for the

iǫ convention is crucial here, as discussed at length in [10]. It is also clear that formula (8)

leads to much simpler calculations than the direct calculation of the loop in (6).

Obtaining the weak self-energy of the finite neutron star is equivalent to calculating the

neutrino propagation in a background of neutron fields density with a border. We did that

analytically in (1 + 1) dimensions with a sharp border, and in (3 + 1) dimensions with a

flat border. The spherical symmetry has been studied both analytically and numerically.

III. THE TOY EXAMPLE OF (1 + 1) DIMENSIONS

Working directly with eq. (6) requires an interacting Feynman propagator that takes

the existence of a border into account. Doing this in (3 + 1) dimensions is a big task.

It is feasible and theoretically fruitful to perform the analytical calculation of eq. (6) in

(1 + 1) dimensions as a toy model. The knowledge extracted from that study will help us
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face the (3 + 1) realistic case by using the general formalism anticipated in section II. We

will now summarize the (1 + 1)-dimensional results presented in more detail in [10].

The (1 + 1)-dimensional toy model is presented in ref. [10]. We will summarize the

computation and the result in order to extract useful information for the more realistic case.

We consider (1 + 1) massless fermion Feynman propagators in a space with two regions

separated by a border. The two regions, inside and outside the star, have different fermion

dispersion relations, as seen in eq. (1).

For simplicity, we consider only one sharp border located at z = 0 and use an effective

neutrino Lagrangian, which summarizes the interaction with the neutrons [15]:

Leff = iν(z)/∂ν(z) − bθ(z)ν(z)γ0ν(z) , (11)

where b is given by eq. (2). The details of the computation of the interacting propagator

can be found in ref. [10]. In momentum space, the propagator can be written as follows:

SF (qf , qi) = 2πδ
(

qf
z − qi

z

)

i

(/q>)∗
+ b

2
1

qf
z−qi

z+iε

×
{

1

(/qi
>)∗
γ0 1

/qf
<

(1 + sign(q0)αz) + 1

(/qf
>)∗
γ0 1

/qi
<

(1 − sign(q0)αz)
}

,
(12)

where:

1

/q<
=

1

/q
=

/q<
q2
< + iε

with (q<)µ = qµ = (q0, ~q) ,

1

(/q>)∗
=

/q>
q2
> + isε

with (q>)µ = (q0 − b, ~q) ; (13)

with s = sign(q0)sign(q0 − b), and αz = γ0γ1. The sign s results from the appropriate

Feynman boundary conditions and from the right choice of the zero energy level. It gives an

adequate time convention. We should emphasize that the propagator (12) is infrared-safe, all

the /q’s in the denominators being regularized by Feynman’s prescription for the distribution

of the propagator poles in the complex-q0 plane [10].

The expression for 1/(/q)∗, given by eq. (13), can be appropriately rewritten as

i

(/q>)∗
= i

{

1

/q>
+ 2πi/q>δ

(

q2
>

)

θ(−q0)θ(q0 − b)

}

. (14)

In ref. [10], we have demonstrated that the main contribution to the weak self-energy comes

from the first term of the propagator (12). We thus identified the expression given in

eq. (14) with the one for the effective propagator, which takes into account the “bulk” of the

neutron star. As a matter of fact, the effective propagator for the infinite star [4] coincides

with the propagator (14), except for the time convention introduced by the proper boundary

conditions, responsible for the second term in the l.h.s. of eq. (14). This term is nothing
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else than the condensate contribution, i.e. the Pauli blocking effect of the neutrinos trapped

into the star by the attractive potential. In refs. [4] and [8], the same condensate term in

the l.h.s. was introduced by hand. Equations (13) and (14) give a confirmation of the idea

proposed in refs. [4] and [15]: the condensate is a consequence of the existence of a border.

The condensate is physically understandable. As we have tuned the level of the Dirac sea

(see eq. (1)) outside the star (to the left), and as our states extend over all space, far inside

the star (to the right), the level corresponds to filling a Fermi sea above the bottom of the

potential b < q0 < 0. This obviously induces a Pauli blocking effect and eq. (1) anticipates

this result: |b| is a lower bound for the momentum of the positive-q0 states.

Now, with the computation of the propagator, it is easy to calculate the weak self-energy

density w(z) for this (1 + 1)-dimensional star by following eq. (6). Some details about

this rather cumbersome calculation may be found in [10]. It is worth while emphasizing

that the vanishing result (15) for the border contribution requires the change in the order of

integration in the momentum space over the variables q0, q
i
z and qf

z . The latter is only possible

in the framework of an implicit ultraviolet regularization scheme. As a matter of fact, the

choice of a certain order of integration over the variables is an ultraviolet regularization

method. By integrating over the momenta we found that this difference vanishes exactly:

w(z) = 0 . (15)

This vanishing interaction energy in (1 + 1) dimensions has a simple physical explanation:

the presence of the border does not disturb the wave functions (up to a phase). There is a

one-to-one correspondence of the negative-energy states in the two media z < 0 and z > 0,

and by interchanging the sum and integral as an ultraviolet regularization procedure, each

term in eq. (8) vanishes exactly. In other words, massless propagating neutrinos are not

reflected by the border of a (1 + 1) star, and the probability density is not affected by the

border either.

The use of eq. (8) allows a trivial generalization of the vanishing result (15) in (1 +

1) dimensions to more complicated structures, for example a star with two sharp borders

or, still better, to a continuously varying neutron density, as long as the density vanishes

asymptotically outside the star.

IV. FLAT BORDER IN (3 + 1) DIMENSIONS

The computation of the neutrino loops (fig. 1) in the (3 + 1)-dimensional case, with a

finite star, as was done in the preceding section for (1 + 1) dimensions, is technically rather

difficult, if only because the neutrino propagators are not simple. In the preceding section

10



we have seen that the use of eq. (8) simplified the calculation a lot, reducing it practically

to triviality in the latter case. We will therefore stick to it in the (3 + 1) case.

We might have faced the (3 + 1)-dimensional problem analytically with interacting

propagators and the approach that led to eq. (6), by using a simplifying assumption: the

influence of the border can be reasonably neglected if the weak energy density is computed

far inside the star. This amounts to considering a star large enough for the contribution

of the bulk effective propagator (14) to be the main one. In other words, it would amount

to assuming an infinite star but taking into account the existence of a matter-free vacuum

infinitely far from the star centre. This matter-free vacuum allows us to fix the zero energy

level, and consequently the adequate time convention for the effective propagator [10].

The latter calculation for the infinite star has indeed already been performed in our

previous work [4]. There, w(~x) was computed using the Schwinger–Dyson expansion of

eq. (16) in [4] and the Pauli–Villars procedure as a means of regularization. As already

noted in the introduction and in ref. [10], a pole (q0 = |~q| + b, in the case |~q| < b) has been

forgotten (see fig. 1 in [10]) in the analytic continuation, which led to a wrong non-null result

for w(~x) when the neutrino condensate effect was added by hand. This happened because

we did not use the iǫ prescription correctly: it had to be imposed in the propagators; this

was already corrected in ref. [10]. Taking into account the results from refs. [4] and [10], we

can conclude that the weak self-energy is null for an infinite stationary star. It should be

repeated that following the correct iǫ prescription, when using propagators, is equivalent to

taking the zero energy level for the states by matching to the free states far outside the star.

Of course the definition of the zero energy level is essential when using eq. (8), as we shall

now do.

The null result for the (3 + 1)-dimensional infinite star is a consequence of neglecting

the existence of border effects. Now, before focusing on the spherical problem and in order

to estimate the border effect, we concentrate on the geometrically easier problem: matter-

free and neutron vacua separated by a flat border 3. For simplicity, the plane z = 0 is

assumed to be the flat border. The application of the approach resulting in eq. (8) requires a

complete set of eigenfunctions for the Hamiltonian with the flat border. These eigenfunctions

should be normalized following the same criteria as previously presented in section II: they

asymptotically behave as plane waves far outside the star, in the sense that they provide, far

outside the star, the same probability and energy density as the free plane waves (solutions

without a star): w(z = −∞) = 0. This condition is imposed inside each Hilbert subspace

3This problem can be understood as the consequence of zooming on the spherical border, the

neutrinos wavelength being much smaller than the radius of the star.
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with energy E ∈ [E,E + dE].

Following [16], we obtain the following set of negative energy eigenfunctions:

ψfree
n−

(x) = Nn−

[(

eik<
i

xvh(~k
<
i ) + eik<

r xRvh(~k
<
i )
)

θ(−z)
+ eik>

t x(1 + R)vh(~k
<
i ) θ(z)

]

ψmtt
n−

(x) = Nn−

[

ei~k<
r x(1 + J )vh(~k

>
mi)θ(−z)

+
(

eik>
mi

xvh(~k
>
mi) + eik>

t xJ vh(~k
>
mi)
)

θ(z)
]

, (16)

where they are directly related to incoming wave packets, the first coming from the free vac-

uum and the second one from the matter vacuum; n− labels the negative-energy eigenstate,

n± = (±|E|, ~kp, h = −1); ~kp stands for the projection of the momentum on the flat border,

and h is the negative helicity of standard neutrinos; Nn−
is the appropriate normalization

factor. We also have k> = (|E|, ~k>), k< = (|E|, ~k<), and

~k<
i = (kx, ky, k

<
z ) , ~k<

r = (kx, ky,−k<
z ) , (17)

~k>
t = (kx, ky, (k

>
z )∗) , ~k>

mi = (kx, ky,−k>
z ) ; (18)

the z-components of the momentum are defined as

k<
z = +

√

E2 − ~k2
p

k>
z = +

√

(|E| − |b|)2 − ~k2
p . (19)

The reflection coefficients R and J can be computed following, for instance, the work of

Gavela et al. [16], we find: R = −J = R0~αk̂p, where k̂p is the unitary vector in the direction

of the transverse momentum ~kp, and ~α = γ0~γ; R0 is given by:

R0 =
2|b||~kp|

(k<
z + k>

z )2 − b2
. (20)

If we consider a neutrino outside the star, with four-momentum (|E|, ~k<), it can easily

be seen that, for |E| − |b| < |~kp| < |E|, the matching condition generates a momentum

inside the star with an imaginary component, k>
z = +i

√

~k2
p − (|E| − |b|)2. Thus, a plane

wave far outside the star in the above-mentioned parameter range generates a damped wave

inside. We have, in other words, a non-penetrating wave. This is a crucial fact, because the

probability density of waves inside and outside the star will be modified in a different way.

It will be seen that the non-zero result for the weak self-energy, in both the flat and the

spherical border cases, is dominated by the effect of these non-penetrating waves.

Following Gavela et al., we can be sure that the only negative-energy non-penetrating

solution, once n is fixed, is the first eigenstate of eqs. (16). Nevertheless, when transmission
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occurs, both eigenstates are needed to span the whole eigenspace. It can be seen that

eq. (16) appears to be a complete set of eigenfunctions [16], [17].

The normalization constants are chosen such that the probability density is asymptoti-

cally equal to the free one. For a given energy this can only be achieved on average up to an

oscillating term that will be considered as a negligible local fluctuation. This normalization

convention will reach its unambiguous meaning in the next section. There, the asymptotic

density of the solutions far outside the star is tuned to the one in the free vacuum. This

asymptotic region is taken to fix the normalization because it extends to infinity while the

star occupies a limited region. Applying then eq. (8), we obtain the following weak energy

density per energy:

∂w

∂|E|(z) = − 4π

(2π)3
|E|3

{

Γ(E, z) − Γ0(E, z)
}

, (21)

where Γ0(E, z) = 1, for free plane waves; Γ(E, z), for instance in the region |E| > |b|, can

be written as:

Γ(E, z) = θ(−z) + γ(E)θ(z) , (22)

where

γ(E) =
∫ 1−|b∗|

0
dx

x√
1 − x2

1 +
R∗

0

1+(R∗
0
)2
x

1 − R∗
0

1+(R∗
0
)2

x
1−|b∗|

. (23)

The parameter b∗ is the dimensionless quantity b/|E|, and R∗
0 is the same function R0 as

given by eq. (20), expressed in terms of the variable x = |~kp|/|E| and of the parameter b∗.

It is easy to see that R0 is a real quantity, except for the non-penetrating waves, the result

|R0|2 = 1 being satisfied in the latter case. It is important to insist on the fact that the

local fluctuations originated by the interference of incident and reflected waves have been

neglected in both regions, z > 0 and z < 0. The fact that these fluctuations contribute

in a negligible way can be easily seen by performing the appropriate normalization of the

eigenstates in a certain box. The contribution of the damped waves inside the star has also

been neglected. That is why we integrate only for penetrating waves to obtain the function

γ(E), i.e. the reason of the upper bound in eq. (23), which implies that R0 is always real in

the l.h.s. of eq. (23). The latter damped waves occupy a thin layer inside the star and are

necessary to make the probability density on the border continuous. A similar effect will be

discussed in the following section for the spherical case.

In order to show the dominance of the effect of the non-penetrating waves, which is

the main aim of this planar computation, the weak energy density (21) will be compared

with a naive estimate of the one coming from non-penetrating waves: integrating simply

13
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FIG. 2. Plots of γ(E) (dashed line) and γS(E) (solid line), defined in the text, as a function of

|b|/|E|.

the plane wave density in the two regions summed over all the allowed momenta in both

kz =
√

E2 − |~kp|2 for z < 0 and kz =
√

(|E| − |b|)2 − |~kp|2 for z < 0, we obtain

γS(E) =

(

|E| − |b|
|E|

)2

. (24)

Equation (24) results from computing separately the density of states in the star and in

the free vacua, the eigenstates in these vacua being obtained for translationally invariant

Hamiltonians, which do not generate reflection on the border. The difference between γS(E)

and γ(E) is precisely due to this neglecting of reflection. The result (24) only accounts for

the fact that certain eigenstates, being allowed in the free vacuum, are not inside the star.

There is an obvious one-to-one correspondence between these eigenstates and the ones for

the untranslational-invariant Hamiltonian (11), which we called non-penetrating waves.

In fig. 2, the functions γ(E) and γS(E) have been plotted.

The small difference between the two curves in fig. 2 shows that the dominant effect of

the border comes from the non-penetrating waves. This result will be confirmed in the next

section. A few comments are in order here. First, the new feature in the (3 + 1)-dimensional

case with respect to the (1 + 1) one is that the non-trivial neutrino refraction index not

only bends the penetrating waves and induces a reflection, but also, beyond the limiting angle,

induces total reflection. This well-known phenomenon, acting here on the negative energy

states, induces the dominant contribution to the star weak self-energy density. It must be

stressed that this effect of non-penetrating waves is utterly unrelated to any Pauli blocking

effect from the neutrino condensate inside the star. Indeed, as we have shown in the (1 + 1)

case, in which the condensate exists, its effect is precisely to equate the energy density inside

14



the star to the one outside. On the other hand, the non-penetrating waves are reflected, not

because of some states, which are already occupied, but because they tend to occupy states

that simply do not exist, with an imaginary momentum. Finally, let us insist that

eqs. (21) and (23) imply that the border effect discovered here is a volume effect, i.e. it

affects the energy density by an almost constant amount in the whole volume occupied by

the star. This result is rather unexpected, a border effect being thought to act only on the

surface. Of course it relies on the hypothesis that the wave packets extend coherently over

the whole star. As will be discussed in section VI, such a hypothesis is perfectly sound for

low-energy neutrinos.

V. REALISTIC STAR: SPHERICAL 3-D

We study a massless neutrino in the presence of an external symmetric static electroweak

potential of finite range due to the interaction with the neutrons of the star. In order

to calculate the weak self-energy
∫

d3r w(~r) =
∫

d3r (〈0̂|H(0)|0̂〉 − 〈0|H0(0)|0〉), which is

nothing else than the difference (8) integrated over space, we need to use the spherical

Bessel functions [18] as a basis for the solutions of the Dirac equation. The effect of the

static neutrons is summarized in the spherically symmetric square-well potential of depth

b < 0 (b ∼ −20 eV):

V (r) =







b < 0 for r ≤ R

0 for r > R
(25)

R being the radius of the star.

¿From the effective Lagrangian of eq. (4),

Leff = ψ (i∂/− V (r)γ0) ψ(r) , (26)

the Dirac equation is:

~α · ~p ψ(~r) = (E − V (r))ψ(~r) , (27)

where

~α =





0 ~σ

~σ 0



 .

Turning the kinetic energy operator ~α · ~p into spherical polar coordinates, we obtain the

eigensolutions :

ψκ,m(~r) = N





u1(r) χ
m
κ (θ, φ)

iu2(r) χ
m
−κ(θ, φ)



 , (28)
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where N is a normalization factor and χm
±κ(θ, φ) are the two-spinors [19] written in terms of

the spherical harmonics Y m
l and spin 1/2 eigensolutions χ 1

2
,µs

:

χm
κ>0(θ, φ) =

∑

µ,µs

〈

κµ
1

2
µs

∣

∣

∣

∣

(

κ− 1

2

)

m
〉

Y µ
κ (θ, φ)χ 1

2
,µs

=









−
√

κ−m+ 1

2

2κ+1
Yκ,m− 1

2
√

κ+m+ 1

2

2κ+1
Yκ,m+ 1

2









, (29)

χm
κ<0(θ, φ)=

∑

µ,µs

〈

(−κ− 1)µ
1

2
µs

∣

∣

∣

∣

(

−κ− 1

2

)

m
〉

Y µ
−κ−1(θ, φ)χ 1

2
,µs

=









√

−κ+m− 1

2

−2κ−1
Y−κ−1,m− 1

2
√

−κ−m− 1

2

−2κ−1
Y−κ−1,m+ 1

2









(30)

Here χm
±|κ|(θ, φ) are eigensolutions of J2, Jz, L

2 and S2, where ~J = ~L + ~S, Jz, ~L and
~S are respectively the total angular momentum, its projection along the z-axis, the orbital

angular momentum and the spin angular momentum verifying the eigenvalue equations:















(~σ · ~L+ 1) χm
±|κ|(θ, φ) = ∓|κ|χm

±|κ|(θ, φ) ,

Jzχ
m
±|κ|(θ, φ) = mχm

±|κ|(θ, φ) , −J ≤ m ≤ +J ,

|κ| = (1, 2, ...) , |κ| = J + 1/2 .

(31)

With this notation, we can easily check that the two chirality states are described by the

same spinor of eq. (28):

ψm
κL,R

=
1

2
(1 ∓ γ5 )ψm

|κ| , (32)

the positive and the negative values of κ being related through the relation:

i γ5 ψ
m
−|κ| = ψm

|κ| . (33)

It then suffices to compute ψm
κ for positive values of κ, use eq. (33) for the negative

values of κ and then get the left-chirality neutrino state using eq. (32). Let us from now on

write the positive κ’s as κ ≡ l = 1, 2, 3, ...., with J = l − 1/2 (see eq. (29)).

The radial functions u1,2 defined in eq. (28) verify the following coupled differential

equations:

d

dr





r u1(r)

r u2(r)



 =





−l
r

(E − V (r))

−(E − V (r)) l
r









r u1(r)

r u2(r)



 . (34)

Now, decoupling the equations and using eq. (25) and the fact that the solution must

be regular in the centre of the core, i.e. r → 0, we get:






u1(r) = α[ jl (k r) θ(R − r) + (B jl(E r) + C yl(E r)) θ(r −R)]

u2(r) = α[ jl−1 (k r) θ(R − r) + (B jl−1(E r) + C yl−1(E r)) θ(r − R)] ,
(35)

16



where we define

k = E − b,

α =
1√

B2 + C2
; (36)

B, C being integration coefficients to be fixed from the matching condition at the surface.

The factor α will be justified below to guarantee the good asymptotic behaviour of functions

u1,2(r). The functions jl and yl are the spherical Bessel functions of the first and second

kind. In the inner region, the solution can be written only in terms of jl because the wave

functions have to be regular at the origin and the yl(ρ)’s are not (see eq. (50)).

According to eq. (8), we are going to use only negative energy states and thus negative

arguments for these Bessel functions (E, k < 0) and the following relations are helpful:

jl(ρ) = (−1)l+1jl(−ρ) , yl(ρ) = (−1)lyl(−ρ) . (37)

The solutions u1,2 have been written in the form (35) in order to match, up to a phase,

the free solutions as r → ∞, where the asymptotic behaviour of the Bessel functions is:

jl(ρ) ∼
ρ→∞ sin

(

ρ− lπ

2

)

/

ρ , yl(ρ) ∼
ρ→∞ cos

(

ρ− lπ

2

)

/

ρ . (38)

This behaviour implies the one followed by our solutions u1,2:

u1(E r) ∼
r→∞ sin

(

E r − πl

2
+ φ

)

/

E r ,

u2(E r) ∼
r→∞ cos

(

E r − πl

2
+ φ

)

/

E r ,

where φ = arctan(C/B) . (39)

Needless to say that in the absence of the star (b = 0), α = 1 and the spherical solutions fit

exactly the free ones, in the asymptotic region r → ∞.

Both inner and outer solutions must join at r = R, and this matching fixes the coefficients

B and C as follows:

B =
jl(k R) yl−1(E R) − jl−1(k R) yl(E R)

jl(E R) yl−1(E R) − jl−1(E R) yl(E R)
,

C =
jl−1(k R) jl(E R) − jl−1(E R) jl(k R)

jl(E R) yl−1(E R) − jl−1(E R) yl(E R)
.

(40)

Finally, in order to fix the solutions definitively, we need to calculate the normalization

factor N by following the asymptotic normalization convention already introduced in the

previous section: we impose the probability density to be asymptotically equal to the free
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one. Since we have fitted α to make the solutions with b 6= 0 coincide, up to a phase, with

those of the free case (b = 0) when r → ∞, we need to compute N only for the free case.

In the latter case, b = 0, α = 1, the Hilbert space of spherical solutions is the one of the free

plane waves 1
(2π)3

ei~p·~r. The solutions (see eq. (40)) reduce to

ψm
l (r) = N





jl(E r) χm
l (θ, φ)

ijl−1(E r) χm
−l(θ, φ)



 . (41)

Now we compute the density of these states ρ(E) in the Hilbert subspace corresponding to

E ∈ [E,E + dE], by summing up all the quantum numbers and the angular degrees of

freedom, while keeping the left chirality and spin fixed because we are counting the negative-

energy and left-handed neutrino states. This gives the probability ρ(E)dE = 4πE2

(2π)3
dE. Using

the relation [18]

∞
∑

µ=0

(2µ+ 1)|jµ|2 = 1 , (42)

we obtain:

N = E/
√

2π . (43)

Now that the solutions of the Dirac equation are known, we can calculate numerically

w(r), which can be written following eq. (8) as [14]:

w(~r) =
∫

dE
∑

l,m

E
(

ψm
l †(~r) ψm

l (~r) − ψ
m (0)
l †(~r) ψm (0)

l (~r)
)

, (44)

where the sum is over all the degrees of freedom of the negative-energy left-handed neutrinos

and where the subscript (0) refers to the matter-free solutions (b = 0). The integration over

the angular part and the summation over m is direct, using eqs. (29) and (30), which lead

to

1

4π

∫

dΩ
∑

m

χ†m
l (θ, φ)χm

l (θ, φ) =
(2J + 1)

4π
=

2l

4π
. (45)

The weak self-energy density (w(r) ≡ dW/dV = dW
4πr2dr

, W being the total weak energy and

V the volume) is then simplified to (using the spherical symmetry);

w(r) =
∫ 0

−∞
dE

E3

2π2

∑

l

l(ρl(k, r) − ρ
(0)
l (E, r)) , (46)

where we have defined

ρl(k, r) = α2
{[

j2
l (k r) + j2

l−1(k r)
]

θ(R − r) +

[(Bjl(E r) + Cyl(E r))2 + (Bjl−1(E r) + Cyl−1(E r))2] θ(r −R)} ,

ρ
(0)
l (E, r) = j2

l (E r) + j2
l−1(E r) ,

(47)
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k and α being given by eq. (36). We were not able to perform the summation over all

the values l and negative energies analytically. We then use numerical computations of the

Bessel functions, and use some knowledge (see ref. [18]) about these functions in order to

justify the truncation of these infinite summations in l, as will be explained now.

Let us define the function

f(E, r, l2) =
l2
∑

l=1

l(ρl(k, r) − ρ
(0)
l (E, r)) , (48)

We have observed that for r > R and fixed values of E and l2, the result becomes rather

stable from r >
∼ R up to r ≫ R, while there is a sudden change when we pass the border

r = R. When we integrate the density over r, the main contribution to (48) comes from

inside the star, r ∈ [0, R] and thus the effect is grossly proportional to the volume.

In order to understand these results qualitatively, a few remarks about the behaviour

of Bessel functions are appropriate. The spherical Bessel functions are solutions of the

differential equation:

(

d2

dρ2
+ k2 − l(l + 1)

ρ2

)

(ρjl) = 0,

(

d2

dρ2
+ k2 − l(l + 1)

ρ2

)

(ρyl) = 0 . (49)

For ρ large, say ρ ∼ ρ0, we may get a hint by replacing 1/ρ2 by 1/ρ2
0 in eq. (49).

For k2 − l(l + 1)/ρ2
0 < 0, i.e. l >

∼ |k| ρ0, the solution jl (yl) is a damped (exploding) exponen-

tial 4. This damping (explosion) is expressed by the well-known behaviour of the spherical

Bessel functions jl and yl in the vicinity of the centre:

jl(ρ)
∼

ρ→0
ρl

(2l + 1)!!
, yl(ρ)

∼
ρ→0

(2l + 1)!!

(2l + 1)
ρ−(l+1) . (50)

For k2 − l(l + 1)/ρ2
0 > 0, - i.e. l <

∼ |k| ρ0, the solution is an oscillating function as ex-

pressed by the asymptotic behaviour (38).

In practice the transition between these two asymptotic regimes is rather fast. In other

words, the Bessel function jl(ρ) increases with ρ at first as a power of ρ, then increases

exponentially until a transition at ρ =
√

l(l + 1) where it becomes an oscillating function,

see eq. (38). Spherical Bessel functions are not so different from

4This damping of jl expresses the semi-classical fact that l ∼ ||~ρ0 × ~k|| < ρ0|k|, the waves corre-

sponding to l > ρ0 |k| are damped.
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jap
l (ρ) = θ(ρ−

√

l(l + 1)) sin

(

ρ− lπ

2

)

/

ρ, ∀ρ,

yap
l (ρ) = θ(ρ−

√

l(l + 1)) cos

(

ρ− lπ

2

)

/

ρ, ρ−
√

l(l + 1) > 0. (51)

The exploding part of yl is not described by eq. (51), but we do not care since, precisely

from imposing regularity at the origin, the yl’s only contribute to our solutions outside the

star, eq. (35), where they are in their oscillating regime, as can be easily checked.

In the following we will use this approximation to guess the results and we will check

numerically these guesses and estimate the corrections to these approximations. Such a

strategy is necessary since we are totally unable to calculate numerically with the realistic

value of |b|R, which is of the order of ∼ 1012. This would need computing up to angular

momenta larger than 1012 ! In practice we have modestly limited ourselves to |b|R ≃ 10

and |E|/b going up to ≃ 100. It is then mandatory to get a qualitative understanding of

the results to be able to extrapolate them to the realistic values. Before going further, it is

worth remarking that the function jap
l defined in (51) verifies the saturation relation (42) at

leading order in 1/(|k|r).
From (51) it seems that the summations on l may be truncated at l >

∼ |E|r. In order to

check this conjecture we will use the free case in which we know the exact solution. For the

plane waves, the energy density wp due to left-handed negative-energy neutrinos is

wp(r) =
∫

dE
E3

2π2
=
∫

dE
E3

2π2

∞
∑

l=1

lρ
(0)
l (E, r) , (52)

as can be directly computed from the plane wave functions, and also via the definition of

ρ
(0)
l in (47) with the help of relation (42). The integration over E in eqs. (46) and (52) is of

course divergent. We will come to this ultraviolet problem later, in section VI.

We have computed

dGp

dE
≡
∫ R

0
4πr2 dr

E3

2π2
(53)

and compared it with

dG

dE
≡
∫ R

0
4πr2 dr

E3

2π2

l2
∑

l=1

lρ
(0)
l (E, r) (54)

in order to see the convergence of the summation. It is confirmed that the summation
∑l2

l=1lρ
(0)
l (E, r) is already very close to its limit 1 as soon as l2 > |E| R. This can be seen in

fig. 3, where we have plotted the absolute values of eqs. (53) and (54).

We have also checked that the summation in (48) saturates when |E| r < l2.

The numerical computations show that α, eq. (36), is quasi-independent of l for

l < |E − b| R and is verified for:
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dG
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∣

∣

∣ in eq. (54) as a function of the energy expressed in units of |b|. The summation

on l goes from 1 to the value indicated on the figure, r is integrated between 0 and R (the radius R

of the star has been fixed to 10|b−1|). The bold line represents the plane wave density
∣

∣

∣

dGp

dE

∣

∣

∣ in eq.

(53).

α2 ≃
|E−b|R>l α

2
t ≡

(

E − b

E

)2

. (55)

This result may be understood by the following argument. Using the approximation

(51), the waves that do not vanish inside the star near the border have the form of a sine

divided by (k R). The corresponding ones, outside the star, are a combination of a sine and

a cosine divided by (E R). Taking the trigonometric functions to be of the same size on

average, an obvious factor of α ≃ αt = |k/E| is needed for the matching at R of the inside

waves and the outside ones. Interestingly enough, this result leads, combined with (42), i.e.

summing over all angular momenta, to an average energy density inside the star of

E(E − b)2/(2π2) ′ (56)

which is the energy multiplying the plane wave probability density, see eq. (52), but for a

plane wave shifted by the potential b. This is reminiscent of eq. (24).

The validity of eq. (55) is shown in fig. 4, where we compare α to αt for different values

of the energy and the parameter l. We can see on this figure that α2 − α2
t is negligible in

average, as long as the momentum l verifies l ≪ |E − b| R.

At this point, we now have a “naive” or “crude” formula for w(r):
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FIG. 4. α2 − α2
t (see eqs. (55) and (36)) as a function of l, for different values of the energy.

The star radius is R = 10b−1.

wcrude(r) ≡
∫

dE
E

2π2

(

(E − b)2 − E2
)

θ(R − r) , (57)

of course, this is a first approximation, the same as we had reached in the flat case (see

section IV) from the function γS(E), eq. (24).

The reason for this agreement between the flat case and the spherical one is easy to

understand physically. It is related to the non-penetrating waves. Let us first consider the

waves with l < |E − b| R. We have already argued that they are trigonometric functions

divided by |E − b| R (|E| R) inside (outside) the star. They are matched on the border.

From that matching itself and their oscillating behaviour, their density has to match up

to a large distance from the border. A different and crucial effect comes from the angular

momenta

|(E − b)| R < l < |E| R . (58)

In the trigonometric regime these waves are functions divided by |E| R outside, while

inside they are in the fast decreasing regime. The matching adjusts them for r = R, but, as

r decreases inside the star, they fall very fast. Essentially they are non-penetrating waves

exactly analogous to the ones with |E − b| < kp < |E| in the previous section. Indeed,

since ~L ≃ ~r × ~k, and noticing that the radial vector being perpendicular to the surface,

its cross product with ~k is parallel to the surface, it becomes obvious that the inequality

|E − b| < kp < |E| is equivalent to eq. (58).
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We have thus seen qualitatively, and checked numerically, that the dominant contribution

to w(~r) is due to non-penetrating waves in the spherical case as well as in the planar case.

The numerical check consisted in the following steps.

In the beginning, we compared:

dW

dE
≡
∫ rmax

0
4πr2dr

E3

2π2

l2
∑

l=1

l(ρl(k, r) − ρ
(0)
l (E, r)) , (59)

for several values of l2, rmax being greater than the star radius R, with

dWcrude

dE
≡ E

2π2

(

(E − b)2 − E2
)

4π R3/3 . (60)

In fig. 5, we have plotted eq. (59) as a function of the energy for several values of l2

and compared with eq. (60). The integration over r in eq. (59) has been done from 0 to

rmax = 3R. This figure confirms that, as long as |E| R < l2, there is no sizeable difference

between the exact result (59) and the “crude” one (60). For higher values of |E| R, we must

increase l2 in order to take all the contributions into account.
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FIG. 5.
∣

∣

∣

dW
dE

∣

∣

∣ in eq. (59) as a function of the energy expressed in units of |b|. The summation on

l goes from 1 to the value indicated in the figure, r is integrated between 0 and rmax = 30 |b−1| (the

radius of the star has been fixed to 10|b−1|). The bold line represents the energy density
∣

∣

∣

dWcrude

dE

∣

∣

∣

in eq. (60).

After that, in order to check the corrections to our formula eq. (57) more accurately, we

computed:
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dδ(r)

dE
=
dδin
dE

+
dδout

dE
where

dδin(r)

dE
≡ 4πr2 E3

2π2





l2
∑

l=1

(α2 − α2
t ) l

(

j2
l (k r) + j2

l−1(k r)
)



 θ(R − r)

and

dδout(r)

dE
≡ 4πr2 E3

2π2

l2
∑

l=1

l [α2 ((Bjl(Er) + Cyl(Er))
2

+ (Bjl−1(Er) + Cyl−1(Er))
2) − ρ(0)(E, r)

]

θ(r − R) .

(61)

Here, we are subtracting from the exact formula the “crude” one, expanded in Bessel func-

tions with the help of the constant factor αt. Indeed, from the plane wave expansion (52)

and the definition of α2
t (55), it is obvious that the term proportional to α2

t in (61) sums up

to the one proportional to E(E − b)2 in (60) and that the term proportional to E3 cancels

the sum of the terms ρ
(0)
l . We have expanded the “crude” contribution into Bessel functions

in order to minimize the error due to the truncation of the sum.

After having performed the integration over r:

d∆

dE
=
d∆in

dE
+
d∆out

dE
where

d∆in

dE
=
∫ R

0
dr

dδin
dE

and
d∆out

dE
=
∫ rmax

R
dr

dδout

dE
,

(62)

we compare in fig. 6 eqs. (59) and (62). We can see from the figure that the correction to

our naive formula (57) is relatively very small and better for larger energies 5.

The integration over r, where rmax > R, shows that

d∆in

dE
< 0 and

d∆out

dE
> 0, (63)

which means that our crude estimate is an underestimate (overestimate) of the probability

density inside (outside) the star. This fact is due to the tendency of the exact solution

to provide a continuous matching on the border, while our “crude” formula has a jump.

We shall discuss this in more detail. Moreover, we have found that this overestimate and

underestimate approximately cancel as can be seen from fig. 7. Note that in this figure

(fig. 7), the summation over l goes to l2 = 80, the fluctuations that we see for E < −8|b|
are due to the truncation in the sum over l when |E| R > 80.

Let us look in more detail into how the sudden jump of our naive formula (57) when

crossing the border of the star is smoothed down into the exact result. There must be some

5The falling down of the dashed line in fig. 6 for E < −8|b| is a truncation artefact.
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FIG. 6. The dashed line represents
∣
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∣

dW
dE

∣

∣

∣ in eq. (59) and the solid line
∣

∣

∣

d∆
dE

∣

∣

∣ in eq. (62). They

are functions of the energy expressed in units of |b|. The summation over l was done from 1 to 80

and the integration over r from r = 0 to r = 30|b−1| (the star radius being R = 10|b−1|).

layer in which the transition takes place. As we have already claimed, this layer is dominated

by the functions in the domain of eq. (58). The width of the border effect depends directly

on the speed of the falling-down of the Bessel functions in (58). If we use the fact that, for l

high enough, the spherical Bessel functions behave like (|k| r)l (see eq. (50)), we can try an

estimate of the border effect, which gives the correction to our “naive” eq. (57). The mean

value of l inside the domain (58) is

lmean = R

∣

∣

∣

∣

(

E − b

2

)

∣

∣

∣

∣

. (64)

If we suppose that half of the jump occurs at r = R−
<
∼ R in the interior of the star and

the other half outside r = R+
>
∼ R, we can construct a term proportional to

dS(r)

dE
≡ 4πr2 E

3

2π2

[

1

2
(1 − α2

t )
(

r

R

)2lmean

θ(R− r) − 1

2
(1 − α2

t )
(

R

r

)2lmean

θ(r −R)

]

, (65)

which will have the role of smoothing the jump in our naive approximation formula eq. (57).

In order to confirm this effect, we have compared in fig. 8, for different values of the

energy, dS/dE with dδ/dE.

In fig. 8, we can see the agreement between the l.h.s. of eqs. (65) and (61), except for

E such that |E| R >
∼ l2, where the truncation effects are important.
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FIG. 7. The horizontal axis represents the energy in units of |b|. The summation over l has

been performed from 1 to 80. For E > 8b, the positive curve represents (eq. (62)) the contributions

d∆out/dE of the exterior of the star, the negative curve the contributions d∆in

dE of the interior. For

the exterior contribution, r have been integrated from R to 3R, the star radius R being fixed to

R = 10|b−1|. An accurate cancellation of both pieces is seen. The oscillation seen for E < 8b is

due to the truncation artefact.

To have an estimate of the width d in which the “joining” occurs, it suffices to write

(

r

R

)lmean

= exp
(

lmean log(
r

R
)
)

;

defining d such that the probability decreases by a factor of 1/e, we get

d =
1

|E − b/2| . (66)

From fig. 8, we can easily see that the larger |E| is, the narrower the width of the joining

layer is. This is clearly seen in fig. 8 a while in 8 b, beyond E = 8b, the truncation effect

comes into play, since |E| R >
∼ l2 = 80.
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FIG. 8. The dashed line represents
dS

dE
in eq. (65) and the solid line

dδ

dE
in eq. (61), as

functions of the position r, in units of |b−1| (the radius of the star has been fixed to R = 10 |b−1|)
for different values of the energy. The summation over l has been done from 1 to 80. The two

lines are similar, confirming the validity of approximation (65), except for E = 10|b| where the

truncation artefact dominates.

VI. DISCUSSION

We now have a qualitative understanding of the dominant contribution to the star mass

correction due to the neutrino exchange. It doesn’t vanish when we consider the realistic

(3 + 1)-dimensional star, because of a border effect proportional to the volume of the

star. It is ultraviolet- divergent and we have to get some understanding of the ultraviolet

cut-off C. This cut-off corresponds to the limit up to which our theory describes, to a good

approximation, the exact one. The dominant contribution (see eq. (57)) wcrude(r) to the

total weak energy is equal to (see eqs. (57) and (60)):

Wcrude =
2

3π
R3
∫ 0

−C
dE E((E − b)2 − E2) ≃ − 4

9π
R3C3b . (67)

This result presents the unexpected feature to be odd in b, while in the perturbative cal-

culation the contributions with an odd number of neutrons vanish exactly, resulting in a

total energy even 6 in b . It is worth noticing that had we started from the symmetrized

6We are indebted to Ken Kiers and Michel Tytgat for having pointed out this fact to us.
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expression for the vacuum loop eq. (9), we would have obtained, instead of (67),

Wsym−crude =
2

3π
R3
∫ 0

−C
dE 2Eb2 ≃ −2

3π
R3C2b2 . (68)

The effective Lagrangian (4) is valid only under the assumption that the neutrons are

approximately static. This breaks down, of course, for an energy scale of, say, C ∼ 100

MeV. Beyond that scale, the neutrons feel the recoil of the scattering. Not far above, one

encounters the scale of confinement in QCD ∼ 1 GeV, and the interaction start to “see” the

substructure of quarks and gluons.

At about the same scale, C ∼ 1
rc

, where rc ≃ 0.5 fm, as noticed by Fischbach [7], a

repulsive core prevents the neutron from “piling-up” in space. In the same ballpark, the

average distance between neutrons 1/C = n−1/3
n ∼ 1 fm (nn is the neutron density in

the neutron star, nn ≃ 0.4 fm−3) is the inverse of an ultraviolet cut-off since, for smaller

distances, our picture of an homogeneous background of neutrons breaks down: the neutrino

“see” individual neutrons in a vacuum that is the standard vacuum. All these cut-offs are

of the same order of magnitude. Choosing the latter, C = n1/3
n ∼ 1 fm−1, we get from (67)

per unit volume an energy of

Wcrude ≃ −bC
3

3π2
≃ |b|nn

20
∼ 10−9 GeV/fm3 ≃ 10−8mn per neutron, (69)

mn being the neutron mass, which means an interaction energy eight orders of magnitude

below the neutron mass, and thus totally negligible. From (68), the result would be even

smaller:

Wsym−crude ≃ −b
2C2

2π2
≃ −|b|2nn

40C
∼ −10−16 GeV/fm3 ≃ −10−15mn per neutron. (70)

We did not yet manage to understand theoretically the relation between the results (69)

and (70). They are derived respectively from eqs. (8) and (9). On the one hand, eq. (9)

leads to a result even in b, as does the perturbative expansion; on the other hand, taking the

negative energies for the vacuum seems more physical to us. It should also be noted that eq.

(9) is equivalent in Fourier space (see eq. (10)), to averaging the complex integration closed

in both the upper and in the lower half-planes. The issue is clearly related to the ultraviolet

regularization. Indeed, subtracting (9) from (8) and using the closure theorem, it is easy to

obtain the formal result:

w(x) − wsym(x) =
i

2

d

dx0
δ3(~x− ~y) = 0 , (71)

where the vanishing occurs since we derive on time a time-independent quantity. Once

regularized by an ultraviolet cut-off so that −C < E < C as in (67) and (68), w(x)−wsym(x)

is not zero. We therefore conclude that the difference between (69) and (70) is related to
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different ultraviolet regularizations. At this point we prefer to present both results, while

studying the issue further.

Another argument leads to reduce the estimate (69). Indeed, throughout this paper

we have considered stationary eigenstates of the Hamiltonian that extend over all space,

such as plane waves. The use of such extended waves contains the implicit assumption that

the neutrino wave packets extend over the whole star and far beyond. In other words our

solutions know about the whole star and its surroundings. This is perfectly legitimate for

low-energy neutrinos, since their mean free path is much larger than the radius of the star.

This means that they feel the coherent interactions from the neutrons as expressed by the

effective Lagrangian (4), but they do not experience incoherent scattering with the neutrons

of the star.

A rough estimate of the neutrino cross section with neutrons is σ ∼ E2
νG

2
F , where GF is

the Fermi constant and Eν the neutrino energy. The mean free path is approximately

λ ≃ 1

nnσ
∼ 1

nnE2
νG

2
F

≃
(

0.5 MeV

Eν

)2

km ≃
(

100 keV

Eν

)2

25 km , (72)

where nn is the neutron density in the star. This means that for an energy of 100 keV,

the mean free path is ∼ 25 km, of the order of the star radius. Let us call this auxiliary

ultraviolet cut-off c (c ≃ 100 keV).

We now decompose the integral on the negative energy modes in two parts. For |Eν | < c

we use formula (67). For energies larger than c but smaller than ∼ 0.2 GeV, we may argue

that the wave packets must have a size of the order of the mean free path. Therefore the

“knowledge” of the border effects extends inside the star on a distance of the order of λ

from the border. A neutrino deeper in the star does not feel the border, we are back to the

situation of an infinite star [4] where we had a vanishing result. The non-zero contribution

comes only from a thin region around the border of width λ. Instead of R3 in (67), we

take R2λ ≃ (c/Eν)
2R3 (using the 1/E2

ν law in (72) and the fact that for c = |Eν |, we have

λ ≃ R). We thus have, instead of (67):

2

3π
R3
∫ 0

−c
dE (−2)E2b+

2

π
R3
∫ −c

−C
dE(−2c2)b =

4

π
R3b(c3/3 + c2(C − c)) ≃ R3c2Cb . (73)

Since c/C ∼ 10−3, we get an average estimate for the energy per volume still six orders

of magnitude below the result of (69), i.e.

∼ 10−14mn per neutron. (74)

Finally it should be remarked that all along this work we have solved a stationary prob-

lem. This means that we have assumed the star, and also the neutrino states inside it, to

have reached an equilibrium status. It is well-known that the stars evolve during their life;
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we thus have implicitly assumed an adiabatic adjustment of the neutrino states. Since the

star evolution is slow and since neutrino motion inside them has the velocity of light, this

seems to us a reasonable assumption. Some further study might still be welcome. We have

also assumed a zero temperature for the neutrinos, since we believe that their interaction is

too small for them to thermalize.

VII. CONCLUDING REMARKS

In order to settle definitively the question of the stability of a neutron star, the multibody

exchange of massless neutrinos has been computed analytically and numerically for a finite

star.

The effect of a border is twofold. First it induces in a natural way the neutrino condensate

as proved in [10]. The latter condensate, does not produce any neutrino exchange interaction

energy in the simplified (1 + 1)-dimensional case and we find it to be negligible in the realistic

(3 + 1)-dimensional case.

The second effect of the border is that the neutrino zero point energy inside the star differs

from the outer one because of negative-energy waves that cannot penetrate inside the star,

being beyond the limiting refraction index at the border. This contribution is proportional

to the volume of the star, but it is still tiny (10−8–10−13 GeV per neutron), completely

negligible in comparison with the neutron mass. We find no infrared divergences in the full

non-perturbative result, which would have necessitated the introduction of a neutrino mass.

The general conclusion of this work is that the neutrino does not need to be massive to

ensure the stability of a neutron star. This is in agreement with recent works (commented

below) by Kachelriess [5] and by Kiers & Tytgat [6]. There is no catastrophic effect due

to the multibody massless neutrino exchange. As already stated in refs. [4] and [10], this

catastrophic result claimed in [7] is only due to an attempt to sum up the perturbative series

outside its radius of convergence.

While finishing this paper, there appeared a paper by Kiers and Tytgat [6]. They accept

the point of view developed in [4] for an infinite star and try, as we do, to solve the problem

of a finite star. Their starting goal is, as ours, to compute the density in eq. (8). They

use a clever technique based on quantizing in a large sphere and expressing the vacuum

energy density in terms of the phase shifts. They first study analytically the unphysical but

illustrative case of small bR and then numerically the large bR case. They show that the

perturbative series à la Fischbach already breaks down as early as bR > π (for the neutron

star, bR ∼ 1012) while the non-perturbative calculation gives a negligible result, a conclusion

which we fully share. One difference between their result and ours is that they find a relation

between the energy density of the neutron star and that of the neutrino condensate. We
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find on the contrary that the result is mainly due to non-penetrating negative-energy waves,

which are not related to the condensate. We did not yet manage to understand the reason

for this discrepancy. It might be related to different UV-regularization methods.

Kachelriess [5] also agrees with us about Fischbach’s “catastrophic” result. He computed

the total weak self-energy for an infinite neutron star following the Schwinger method, by

using the neutrino propagator in momentum space, as we did in ref. [4]. He obtained

a non-zero weak self-energy without taking into account the neutrino sea effects. As we

acknowledged in section IV and in ref. [10], a minor mistake was made in ref. [4]: the

contribution of a pole had been forgotten in the calculation. Once this mistake is corrected,

we agree with Kachelriess about the result when neglecting the neutrino sea. He attributed

the discrepancy to the fact that we took the limit (y → x) before integrating over the whole

space to obtain the total weak self-energy (see eq. (6)). We do not agree with this conjecture

about the discrepancy, first because, as we just mentioned, the forgotten pole removes the

discrepancy, second because we have verified that our previous UV-regularization makes

the x → y limit regular. Finally, from our analysis of finite stars [10], we insist that the

condensate has to be taken into account and, amazingly, it exactly cancels the forgotten pole

contribution, resulting finally in w(~x) = 0 for an infinite star.

A few weeks later, Fischbach and Woodahl [20] repeated Fischbach’s original claim and

used the same expansion, order by order, in the number of neutrons, i.e. equivalently in

perturbation in the parameter bR. Astonishingly enough they did not consider the series

of works demonstrating that this series is simply divergent, but that the total result may

be computed directly by the effective Lagrangian technique. They argued that our non-

perturbative calculation encounters cancellations because, in the effective approach, the

neutron medium is assumed by us to be a continuous background. Of course, treating the

neutron medium as a homogeneous continuum medium is an approximation à la Hartree–

Fock, and it should be corrected in the ultraviolet by taking into account the correlation

between neutrons. This is precisely one of the reasons why we considered that a natural

ultraviolet cut-off was the energy scale of a few MeV. The authors of [7] take the size of the

neutron hard core as an ultraviolet cut-off. Why not, although many other ultraviolet effects

arise at the same scale of a few 100 MeV: the neutron recoil, the quark and gluon content

of the neutron, without forgetting the incoherent neutrino–neutron scattering discussed in

the previous section. But these ultraviolet effects will not at all modify the analysis of the

infrared catastrophe advocated by Fischbach and denied by us. The authors of [20] seem

to imply that we have added some unjustified assumption in our work. The truth is on

the contrary that we have assumed nothing that they did not assume themselves, such as

the static neutron assumption, but we have not assumed, as they do, that a neutron is not

allowed to interact more than once, neither did we make the drastic approximations that
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appear in their work at high order in perturbation. The effective Lagrangian approach allows

to compute exactly, in a simple manner, and with fewer assumptions than the perturbative

expansion approach.

The authors of [20] criticize our recent (1 + 1)-dimensional toy calculation [10] arguing

that the critical parameter bR is much smaller than 1 in (1 + 1) dimensions. However, they

did not notice that our (1 + 1)-dimensional result is absolutely exact, independently of the

parameter bR, which, incidentally, we have taken to be large.

To finish, we feel it necessary to insist. The main issue is the failure of the perturbative

expansion, which is infrared-divergent. Happily one can spare this difficulty thanks to the

effective action technique. Once this point is understood, the different analyses all agree,

notwithstanding minor discrepancies, that although the massless neutrino exchange between

fermions is a long-range interaction, it does not give any significant contribution to the total

energy of a neutron star, finite or infinite.
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