8 research outputs found

    Seroprevalence and entomological study on Chikungunya virus at the Croatian littoral

    Get PDF
    During 2011–2012, a total of 1008 serum samples from randomly selected inhabitants of seven Croatian counties located on the Adriatic Coast were tested for the presence of chikungunya virus (CHIKV) IgG antibodies using indirect immunofluorescence assay. Nine participants (0.9%) from four counties were found to be seropositive to CHIKV. Seroprevalence varied from 0.5% to 1.8% between counties. Additionally, a total of 3,699 mosquitoes were captured in 126 localities from August 16 to September 24, 2011. Three mosquito species were found: Ae. albopictus (3010/81.4%), Cx. pipiens (688/18.6%) and only one specimen of the Cs. longiareolata. Female mosquitoes (N = 1,748) were pooled. All pools tested negative for CHIKV RNA using a real-time RT-PCR

    COVID-19 AND THE ENVIRONMENT – THE ROLE OF THE PUBLIC HEALTH INSTITUTE

    Get PDF
    The Croatian National Health Care Act defines the areas of activities of the public health institute, including the activities of the epidemiology of infectious diseases and chronic non-communicable diseases, public health, health promotion, environmental health, microbiology, school and adolescent medicine, mental health and addiction prevention at Zagreb City level. This paper reviews the highly variable activities in the Andrija Štampar Teaching Institute of Public Health with the aim of promoting a comprehensive approach to the COVID-19 pandemic. Human and analytical resources in the Institute, activities and rapid implementation of innovations testify to the high capacities for adaptation to emerging risks. In the Institute, it is possible to carry out a whole range of tests and to monitor the environmental factors with predominant impact on human health and safety of the Zagreb environment. The supply of safe water for human consumption in the Republic of Croatia during the current COVID-19 crisis has been uninterrupted and in accordance with applicable legislation. Also, our laboratories have been developing and introducing a method for wastewater testing for SARS-CoV-2 presence. The sludge from wastewater treatment plants is used in agriculture, and potential risks associated with the COVID-19 outbreak should be assessed prior to each application on the soil. Increased use of disinfectants during the epidemic may present a higher risk to the aquatic environment. Air quality monitoring indicates a positive impact on air quality as result of isolation measures

    AIMSurv: First pan-European harmonized surveillance of Aedes invasive mosquito species of relevance for human vector-borne diseases

    Get PDF
    Human and animal vector-borne diseases, particularly mosquito-borne diseases, are emerging or re-emerging worldwide. Six Aedes invasive mosquito (AIM) species were introduced to Europe since the 1970s: Aedes aegypti, Ae. albopictus, Ae. japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus. Here, we report the results of AIMSurv2020, the first pan-European surveillance effort for AIMs. Implemented by 42 volunteer teams from 24 countries. And presented in the form of a dataset named “AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. Project ID: CA17108”. AIMSurv2020 harmonizes field surveillance methodologies for sampling different AIMs life stages, frequency and minimum length of sampling period, and data reporting. Data include minimum requirements for sample types and recommended requirements for those teams with more resources. Data are published as a Darwin Core archive in the Global Biodiversity Information Facility- Spain, comprising a core file with 19,130 records (EventID) and an occurrences file with 19,743 records (OccurrenceID). AIM species recorded in AIMSurv2020 were Ae. albopictus, Ae. japonicus and Ae. koreicus, as well as native mosquito species

    Epidemiology of Usutu Virus: The European Scenario

    No full text
    Usutu virus (USUV) is an emerging arbovirus isolated in 1959 (Usutu River, Swaziland). Previously restricted to sub-Saharan Africa, the virus was introduced in Europe in 1996. While the USUV has received little attention in Africa, the virus emergence has prompted numerous studies with robust epidemiological surveillance programs in Europe. The natural transmission cycle of USUV involves mosquitoes (vectors) and birds (amplifying hosts) with humans and other mammals considered incidental (“dead-end”) hosts. In Africa, the virus was isolated in mosquitoes, rodents and birds and serologically detected in horses and dogs. In Europe, USUV was detected in bats, whereas antibodies were found in different animal species (horses, dogs, squirrels, wild boar, deer and lizards). While bird mortalities were not reported in Africa, in Europe USUV was shown to be highly pathogenic for several bird species, especially blackbirds (Turdus merula) and great gray owls (Strix nebulosa). Furthermore, neurotropism of USUV for humans was reported for the first time in both immunocompromised and immunocompetent patients. Epizootics and genetic diversity of USUV in different bird species as well as detection of the virus in mosquitoes suggest repeated USUV introductions into Europe with endemization in some countries. The zoonotic potential of USUV has been reported in a growing number of human cases. Clinical cases of neuroinvasive disease and USUV fever, as well as seroconversion in blood donors were reported in Europe since 2009. While most USUV strains detected in humans, birds and mosquitoes belong to European USUV lineages, several reports indicate the presence of African lineages as well. Since spreading trends of USUV are likely to continue, continuous multidisciplinary interventions (“One Health” concept) should be conducted for monitoring and prevention of this emerging arboviral infection

    Mosquito Alert Dataset

    No full text
    The Mosquito Alert dataset includes occurrence records of adult mosquitoes. The records were collected through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Each record presented in the database is linked to a photograph submitted by a citizen scientist and validated by entomological experts to determine if it provides evidence of the presence of any of five targeted mosquito vectors of top concern in Europe (i.e. Aedes albopictus, Aedes aegypti, Aedes japonicus, Aedes koreicus, Culex pipiens). The temporal coverage of the database is from 2014 through 2022 and the spatial coverage is worldwide. Most of the records from 2014 to 2020 are from Spain, reflecting the fact that the project was funded by Spanish national and regional funding agencies. Since autumn 2020 the data has expanded to include substantial records from other countries in Europe, particularly the Netherlands, Italy, and Hungary, thanks to a human volunteering network of entomologists coordinated by the AIM-COST Action and to technological developments through the VEO project to increase scalability. Among many possible applications, Mosquito Alert dataset facilitates the development of citizen-based early warning systems for mosquito-borne disease risk. This dataset can be further re-used for modelling vector exposure risk or training machine-learning detection and classification routines on the linked images, to help experts in data validation and build up automated alert systems

    Mosquito Alert - Leveraging Citizen Science to Create a GBIF Mosquito Occurrence Dataset

    No full text
    The Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014–2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems

    Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset

    Get PDF
    Este artículo contiene 13 páginas, 2 figuras.The Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014–2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems.This work was supported by: • 2021–2022 Fair Computational Epidemiology (FACE); Plataforma Temática Interdisciplinar PTI+ Salud Global, Consejo Superior de Investigaciones Científicas (CSIC); Grant No.: N/A. • 2020–2025 Human-Mosquito Interaction Project: Host-vector networks, mobility and the socio-ecological context of mosquito-borne disease; European Research Council (ERC); Grant No.: 853271. • 2020–2021 Strengthening Barcelona’s Defenses Against Disease-Vector Mosquitoes: Automatically Calibrated Citizen-Based Surveillance, Barcelona Ciència; Ajuntament de Barcelona, Institut de Cultura; Grant No.: BCNPC/00041. • 2020–2024 VEO: Versatile Emerging infectious disease Observatory, H2020 SC1-BHC-13-2019; European Commission (EC); Grant No.: 874735. • 2020–2025 Preparing for vector-borne virus outbreaks in a changing world: a One Health Approach; Dutch National Research Agenda (NWA); Grant No.: NWA/00686468. • 2019–2021 Big Mosquito Bytes: Community-Driven Big Data Intelligence to Fight Mosquito-Borne Disease; Fundació “La Caixa”, Health Research 2018 “la Caixa” Banking Foundation; Grant No.: HR19-00336. • 2018–2022 Aedes Invasive Mosquitoes (AIM), COST ACTION OC-2017-1-22105; European Cooperation in Science and Technology (COST); Grant No.: CA17108. • 2018 Mosquito Alert: programa para investigar y controlar mosquitos vectores de enfermedades como el Dengue, el Chikungunya y el Zika; Fundació “La Caixa”; Grant No.: N/A. • 2017–2019 Plataforma Integral per al Control de l’Arbovirosis a Catalunya (PICAT); Departament de Salut, Programa PERIS 2016–2020, Generalitat de Catalunya; Grant No.: 00466. • 2016–2018 Ciència ciutadana per a la millora de la gestió i els models predictius de dispersió i distribució real de mosquit tigre a la Província de Girona; Diputació de Salut de Girona (DIPSALUT); Grant No.: N/A. • 2016 Nuevas herramientas de participación en ciencia ciudadana: laboratorios de validación y cocreación para AtrapaelTigre.com; Fundación Española para la Ciencia y la Tecnología (FECYT); Grant No.: FCT-15-9515. • 2016–2017 Mosquito Alert: programa para investigar y controlar mosquitos vectores de enfermedades como el Dengue, el Chikungunya y el Zika; Fundació “La Caixa”; Grant No.: N/A. • 2016–2017 Ciència ciutadana per a la millora de la gestió i els models predictius de dispersió i distribució real de mosquit tigre a la Província de Girona; Diputació de Salut de Girona (DIPSALUT); Grant No.: N/A. • 2015–2016 Citizens-based early warning systems for invasive species and disease vectors: The case of the Asian Tiger mosquito; Fundació “La Caixa” and Centre de Recerca Ecològica i Aplicacions Forestals (CREAF); Grant No.: N/A. • 2014–2016 Invasión del mosquito tigre en España: Salud pública y cambio global; Ministerio de Economía y Competitividad, Plan Estatal I+D+I; Grant No.: CGL2013-43139-R. • 2014 Diseño e implementación de un sistema ciudadano de alerta y seguimiento del mosquito tigre: ciencia en sociedad (Atrapa el Tigre 2.0); Fundación Española para la Ciencia y la Tecnología (FECYT); Grant No.: FCT-13-701955.Peer reviewe
    corecore