54 research outputs found

    Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide

    Get PDF
    An association has previously been shown between antibiotic-refractory Lyme arthritis, the human histocompatibility leukocyte antigen (HLA)–DR4 molecule, and T cell recognition of an epitope of Borrelia burgdorferi outer-surface protein A (OspA163–175). We studied the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes in 121 patients with antibiotic-refractory or antibiotic-responsive Lyme arthritis and correlated these frequencies with in vitro binding of the OspA163–175 peptide to 14 DRB molecules. Among the 121 patients, the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes were similar to those in control subjects. However, when stratified by antibiotic response, the frequencies of DRB1 alleles in the 71 patients with antibiotic-refractory arthritis differed significantly from those in the 50 antibiotic-responsive patients (log likelihood test, P = 0.006; exact test, P = 0.008; effect size, Wn = 0.38). 7 of the 14 DRB molecules (DRB1*0401, 0101, 0404, 0405, DRB5*0101, DRB1*0402, and 0102) showed strong to weak binding of OspA163–175, whereas the other seven showed negligible or no binding of the peptide. Altogether, 79% of the antibiotic-refractory patients had at least one of the seven known OspA peptide–binding DR molecules compared with 46% of the antibiotic-responsive patients (odds ratio = 4.4; P < 0.001). We conclude that binding of a single spirochetal peptide to certain DRB molecules is a marker for antibiotic-refractory Lyme arthritis and might play a role in the pathogenesis of the disease

    Spectrum of HLA associations: the case of medically refractory pediatric acute lymphoblastic leukemia

    Get PDF
    Although studies of HLA and disease now date back some 50 years, a principled understanding of that relationship has been slow to emerge. Here, we examine the associations of three HLA loci with medically refractory pediatric acute lymphoblastic leukemia (pALL) patients in a case–control study involving 2,438 cases and 41,750 controls. An analysis of alleles from the class I loci, HLA-A and HLA-B, and the class II locus DRB1 illuminates a spectrum of extremely significant allelic associations conferring both predisposition and protection. Genotypes constructed from predisposing, protective, and neutral allelic categories point to an additive mode of disease causation. For all three loci, genotypes homozygous for predisposing alleles are at highest disease risk while the favorable effect of homozygous protective genotypes is less striking. Analysis of A–B and B–DRB1 haplotypes reveals locus-specific differences in disease effects, while that all three loci influence pALL; the influence of HLA-B is greater than that of HLA-A, and the predisposing effect of DRB1 exceeds that of HLA-B. We propose that the continuum in disease susceptibility suggests a system in which many alleles take part in disease predisposition based on differences in binding affinity to one or a few peptides of exogenous origin. This work provides evidence that an immune response mediated by alleles from several HLA loci plays a critical role in the pathogenesis of pALL, adding to the numerous studies pointing to a role for an infectious origin in pALL

    Contrasting patterns of nuclear and mtDNA diversity in Native American populations.

    Get PDF
    International audienceWe report an integrated analysis of nuclear (autosomal, X- and Y-chromosome) short tandem repeat (STR) data and mtDNA D-loop sequences obtained in the same set of 22 Native populations from across the Americas. A north to south gradient of decreasing population diversity was observed, in agreement with a settlement of the Americas from the extreme northwest of the continent. This correlation is stronger with "least cost distances," which consider the coasts as facilitators of migration. Continent-wide estimates of population structure are highest for the Y-chromosome and lowest for the autosomes, consistent with the effective size of the different marker systems examined. Population differentiation is highest in East South America and lowest in Meso America and the Andean region. Regional analyses suggest a deviation from mutation-drift equilibrium consistent with population expansion in Meso America and the Andes and population contraction in Northwest and East South America. These data hint at an early divergence of Andean and non-Andean South Americans and at a contrasting demographic history for populations from these regions

    Contrasting Patterns of Nuclear and mtDNA Diversity in Native American Populations

    Get PDF
    We report an integrated analysis of nuclear (autosomal, X- and Y-chromosome) short tandem repeat (STR) data and mtDNA D-loop sequences obtained in the same set of 22 Native populations from across the Americas. A north to south gradient of decreasing population diversity was observed, in agreement with a settlement of the Americas from the extreme northwest of the continent. This correlation is stronger with "least cost distances," which consider the coasts as facilitators of migration. Continent-wide estimates of population structure are highest for the Y-chromosome and lowest for the autosomes, consistent with the effective size of the different marker systems examined. Population differentiation is highest in East South America and lowest in Meso America and the Andean region. Regional analyses suggest a deviation from mutation-drift equilibrium consistent with population expansion in Meso America and the Andes and population contraction in Northwest and East South America. These data hint at an early divergence of Andean and non-Andean South Americans and at a contrasting demographic history for populations from these regions.Instituto Multidisciplinario de Biología Celula

    Geographic Patterns of Genome Admixture in Latin American Mestizos

    Get PDF
    The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region

    Latin Americans show wide-spread Converso ancestry and imprint of local Native ancestry on physical appearance

    Get PDF
    Historical records and genetic analyses indicate that Latin Americans trace their ancestry mainly to the intermixing (admixture) of Native Americans, Europeans and Sub-Saharan Africans. Using novel haplotype-based methods, here we infer sub-continental ancestry in over 6,500 Latin Americans and evaluate the impact of regional ancestry variation on physical appearance. We find that Native American ancestry components in Latin Americans correspond geographically to the present-day genetic structure of Native groups, and that sources of non-Native ancestry, and admixture timings, match documented migratory flows. We also detect South/East Mediterranean ancestry across Latin America, probably stemming mostly from the clandestine colonial migration of Christian converts of non-European origin (Conversos). Furthermore, we find that ancestry related to highland (Central Andean) versus lowland (Mapuche) Natives is associated with variation in facial features, particularly nose morphology, and detect significant differences in allele frequencies between these groups at loci previously associated with nose morphology in this sample.Instituto Multidisciplinario de Biología Celula

    Latin Americans show wide-spread Converso ancestry and imprint of local Native ancestry on physical appearance

    Get PDF
    Historical records and genetic analyses indicate that Latin Americans trace their ancestry mainly to the intermixing (admixture) of Native Americans, Europeans and Sub-Saharan Africans. Using novel haplotype-based methods, here we infer sub-continental ancestry in over 6,500 Latin Americans and evaluate the impact of regional ancestry variation on physical appearance. We find that Native American ancestry components in Latin Americans correspond geographically to the present-day genetic structure of Native groups, and that sources of non-Native ancestry, and admixture timings, match documented migratory flows. We also detect South/East Mediterranean ancestry across Latin America, probably stemming mostly from the clandestine colonial migration of Christian converts of non-European origin (Conversos). Furthermore, we find that ancestry related to highland (Central Andean) versus lowland (Mapuche) Natives is associated with variation in facial features, particularly nose morphology, and detect significant differences in allele frequencies between these groups at loci previously associated with nose morphology in this sample.Instituto Multidisciplinario de Biología Celula

    Contrasting Patterns of Nuclear and mtDNA Diversity in Native American Populations

    Get PDF
    We report an integrated analysis of nuclear (autosomal, X- and Y-chromosome) short tandem repeat (STR) data and mtDNA D-loop sequences obtained in the same set of 22 Native populations from across the Americas. A north to south gradient of decreasing population diversity was observed, in agreement with a settlement of the Americas from the extreme northwest of the continent. This correlation is stronger with "least cost distances," which consider the coasts as facilitators of migration. Continent-wide estimates of population structure are highest for the Y-chromosome and lowest for the autosomes, consistent with the effective size of the different marker systems examined. Population differentiation is highest in East South America and lowest in Meso America and the Andean region. Regional analyses suggest a deviation from mutation-drift equilibrium consistent with population expansion in Meso America and the Andes and population contraction in Northwest and East South America. These data hint at an early divergence of Andean and non-Andean South Americans and at a contrasting demographic history for populations from these regions.Instituto Multidisciplinario de Biología Celula

    Reconstructing Native American Population History

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America
    corecore