1,681 research outputs found
Attosecond nanoplasmonic streaking of localized fields near metal nanospheres
Collective electron dynamics in plasmonic nanosystems can unfold on
timescales in the attosec- ond regime and the direct measurements of plasmonic
near-field oscillations is highly desirable. We report on numerical studies on
the application of attosecond nanoplasmonic streaking spectroscopy to the
measurement of collective electron dynamics in isolated Au nanospheres. The
plasmonic field oscillations are induced by a few-cycle NIR driving field and
are mapped by the energy of photoemitted electrons using a synchronized,
time-delayed attosecond XUV pulse. By a detailed analysis of the amplitudes and
phase shifts, we identify the different regimes of nanoplasmonic streaking and
study the dependence on particle size, XUV photoelectron energy and emission
position. The simulations indicate that the near-fields around the
nanoparticles can be spatio-temporally reconstructed and may give detailed
insight into the build-up and decay of collective electron motion.Comment: Revised versio
Thermodynamical Properties of a Rotating Ideal Bose Gas
In a recent experiment, a Bose-Einstein condensate was trapped in an
anharmonic potential which is well approximated by a harmonic and a quartic
part. The condensate was set into such a fast rotation that the centrifugal
force in the corotating frame overcompensates the harmonic part in the plane
perpendicular to the rotation axis. Thus, the resulting trap potential became
Mexican-hat shaped. We present an analysis for an ideal Bose gas which is
confined in such an anharmonic rotating trap within a semiclassical
approximation where we calculate the critical temperature, the condensate
fraction, and the heat capacity. In particular, we examine in detail how these
thermodynamical quantities depend on the rotation frequency.Comment: Author Information under
http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir
Recommended from our members
Valuing improvements in the ecological integrity of local and regional waters using the biological condition gradient
Scientific knowledge related to quantifying the monetized benefits for landscape-wide water quality improvements does not meet current regulatory and benefitâcost analysis needs in the United States. In this study we addressed this knowledge gap by incorporating the Biological Condition Gradient (BCG) as a water quality metric into a stated preference survey capable of estimating the total economic value (use and nonuse) for aquatic ecosystem improvements. The BCG is grounded in ecological principles and generalizable and transferable across space. Moreover, as the BCG translates available data on biological condition into a score on a 6-point scale, it provides a simple metric that can be readily communicated to the public. We applied our BCG-based survey instrument to households across the Upper Mississippi, Ohio, and Tennessee river basins and report values for a range of potential improvements that vary by location, spatial scale, and the scope of the water quality change. We found that people are willing to pay twice as much for an improvement policy that targets their home watershed (defined as a four-digit hydrologic unit) versus a more distant one. We also found that extending the spatial scale of a local policy beyond the home watershed does not generate additional benefits to the household. Finally, our results suggest that nonuse sources of value (e.g., bequest value, intrinsic aesthetic value) are an important component of overall benefits
Complete characterization of single-cycle double ionization of argon from the nonsequential to the sequential ionization regime
Citation: Kubel, M., Burger, C., Kling, N. G., Pischke, T., Beaufore, L., Ben-Itzhak, I., . . . Bergues, B. (2016). Complete characterization of single-cycle double ionization of argon from the nonsequential to the sequential ionization regime. Physical Review A, 93(5), 9. doi:10.1103/PhysRevA.93.053422Selected features of nonsequential double ionization have been qualitatively reproduced by a multitude of different (quantum and classical) approaches. In general, however, the typical uncertainty of laser pulse parameters and the restricted number of observables measured in individual experiments leave room for adjusting theoretical results to match the experimental data. While this has been hampering the assessment of different theoretical approaches leading to conflicting interpretations, comprehensive experimental data that would allow such an ultimate and quantitative assessment have been missing so far. To remedy this situation we have performed a kinematically complete measurement of single-cycle multiple ionization of argon over a one order of magnitude range of intensity. The momenta of electrons and ions resulting from the ionization of the target gas are measured in coincidence, while each ionization event is tagged with the carrier-envelope phase and intensity of the 4-fs laser pulse driving the process. The acquired highly differential experimental data provide a benchmark for a rigorous test of the many competing theoretical models used to describe nonsequential double ionization
String Field Theory Projectors for Fermions of Integral Weight
The interaction vertex for a fermionic first order system of weights (1,0)
such as the twisted bc-system, the fermionic part of N=2 string field theory
and the auxiliary \eta\xi system of N=1 strings is formulated in the Moyal
basis. In this basis, the Neumann matrices are diagonal; as usual, the
eigenvectors are labeled by \kappa\in\R. Oscillators constructed from these
eigenvectors make up two Clifford algebras for each nonzero value of \kappa.
Using a generalization of the Moyal-Weyl map to the fermionic case, we classify
all projectors of the star-algebra which factorize into projectors for each
\kappa-subspace. At least for the case of squeezed states we recover the full
set of bosonic projectors with this property. Among the subclass of ghost
number-homogeneous squeezed state projectors, we find a single class of
BPZ-real states parametrized by one (nearly) arbitrary function of \kappa. This
class is shown to contain the generalized butterfly states. Furthermore, we
elaborate on sufficient and necessary conditions which have to be fulfilled by
our projectors in order to constitute surface states. As a byproduct we find
that the full star product of N=2 string field theory translates into a
canonically normalized continuous tensor product of Moyal-Weyl products up to
an overall normalization. The divergent factors arising from the translation to
the continuous basis cancel between bosons and fermions in any even dimension.Comment: LaTeX, 1+23 pages, minor improvements, references adde
Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses
We investigate the short and long term wettability of laser textured stainless steel samples in order to better understand the interplay between surface topography and chemistry. Very different 1D and 2D periodic as well as non-periodic surface patterns were produced by exploiting the extreme flexibility of a setup consisting of five rotating birefringent crystals, which allows generating bursts of up to 32 femtosecond laser pulses with fixed intra-burst delay of 1.5 ps. The change of the surface morphology as a function of the pulse splitting, the burst polarization state and the fluence was systematically studied. The surface topography was characterized by SEM and AFM microscopy. The laser textured samples exhibited, initially, superhydrophilic behaviour which, during exposure to ambient air, turned into superhydrophobic with an exponential growth of the static contact angle. The dynamic contact angle measurements revealed a water adhesive character which was explained by XPS analyses of the surfaces that showed an increase of hydrocarbons and more oxidized metal species with the aging. The characteristic water adhesiveness and superhydrophobicity of laser textured surfaces can be exploited for no loss droplet reversible transportation or harvesting
- âŠ