119 research outputs found

    Behavioural Salinity Preferences of Juvenile Green Sturgeon \u3ci\u3eAcipenser medirostris\u3c/i\u3e Acclimated to Fresh Water and Full-Strength Salt Water

    Get PDF
    To quantify the salinity preference of juvenile green sturgeon Acipenser medirostris, two groups of A. medirostris [140 days post hatch (dph); total length (LT) 38.0–52.5 cm] were acclimated to either near fresh water (mean Β± S.E. salinity = 3.2 Β± 0.6) or full-strength salt water (34.1 Β± 1.2) over 8 weeks. Following acclimation, the two groups were divided into experimental and control groups, where experimental A. medirostris from both freshwater and saltwater acclimations were individually introduced (200–220 dph) into a rectangular salinity-preference flume (maximum salinity gradient: 5–33). Control A. medirostris were presented with only their acclimation water (fresh water or salt water) on both sides of the flume. It was demonstrated that A. medirostris acclimated to both salt water and fresh water spent a significantly greater amount of time on the side of the testing area with the highest salinity concentration (P \u3c 0.05 and P \u3c 0.001, respectively) while control A. medirostris spent an equal amount of time on each side of the flume. These findings indicate that juvenile A. medirostris are not only capable of detecting salt water within the first year of their lives but perhaps are actively seeking out saline environments as they move through a watershed. Establishing A. medirostris salinity preferences provides a better understanding of the early life history of this threatened species, shedding light on possible outmigration timing

    Tuna Longline Fishing around West and Central Pacific Seamounts

    Get PDF
    BACKGROUND: Seamounts have been identified as aggregating locations for pelagic biodiversity including tuna; however the topography and prevailing oceanography differ between seamounts and not all are important for tuna. Although a relatively common feature in oceanic ecosystems, little information is available that identifies those that are biologically important. Improved knowledge offers opportunities for unique management of these areas, which may advance the sustainable management of oceanic resources. In this study, we evaluate the existence of an association between seamounts and tuna longline fisheries at the ocean basin scale, identify significant seamounts for tuna in the western and central Pacific Ocean, and quantify the seamount contribution to the tuna longline catch. METHODOLOGY/PRINCIPAL FINDINGS: We use data collected for the Western and Central Pacific Ocean for bigeye, yellowfin, and albacore tuna at the ocean basin scale. GLMs were applied to a coupled dataset of longline fisheries catch and effort, and seamount location information. The analyses show that seamounts may be associated with an annual longline combined catch of 35 thousand tonnes, with higher catch apparent for yellowfin, bigeye, and albacore tuna on 17%, 14%, and 14% of seamounts respectively. In contrast 14%, 18%, and 20% of seamounts had significantly lower catches for yellowfin, bigeye and albacore tuna respectively. Studying catch data in relation to seamount positions presents several challenges such as bias in location of seamounts, or lack of spatial resolution of fisheries data. Whilst we recognize these limitations the criteria used for detecting significant seamounts were conservative and the error in identification is likely to be low albeit unknown. CONCLUSIONS/SIGNIFICANCE: Seamounts throughout the study area were found to either enhance or reduce tuna catch. This indicates that management of seamounts is important Pacific-wide, but management approaches must take account of local conditions. Management of tuna and biodiversity resources in the region would benefit from considering such effects

    Evidence for Geomagnetic Imprinting as a Homing Mechanism in Pacific Salmon

    Get PDF
    In the final phase of their spawning migration, Pacific salmon use chemical cues to identify their home river, but how they navigate from the open ocean to the correct coastal area has remained enigmatic [1]. To test the hypothesis that salmon imprint on the magnetic field that exists where they first enter the sea and later seek the same field upon return [2-4], we analyzed a 56-year fisheries data set on Fraser River sockeye salmon, which must detour around Vancouver Island to approach the river through either a northern or southern passageway [5, 6]. We found that the proportion of salmon using each route was predicted by geomagnetic field drift: the more the field at a passage entrance diverged from the field at the river mouth, the fewer fish used the passage. We also found that more fish used the northern passage in years with warmer sea surface temperature (presumably because fish were constrained to more northern latitudes). Field drift accounted for 16% of the variation in migratory route used, temperature 22%, and the interaction between these variables 28%. These results provide the first empirical evidence of geomagnetic imprinting in any species and imply that forecasting salmon movements is possible using geomagnetic models

    Integrated Management and Visualization of Electronic Tag Data with Tagbase

    Get PDF
    Electronic tags have been used widely for more than a decade in studies of diverse marine species. However, despite significant investment in tagging programs and hardware, data management aspects have received insufficient attention, leaving researchers without a comprehensive toolset to manage their data easily. The growing volume of these data holdings, the large diversity of tag types and data formats, and the general lack of data management resources are not only complicating integration and synthesis of electronic tagging data in support of resource management applications but potentially threatening the integrity and longer-term access to these valuable datasets. To address this critical gap, Tagbase has been developed as a well-rounded, yet accessible data management solution for electronic tagging applications. It is based on a unified relational model that accommodates a suite of manufacturer tag data formats in addition to deployment metadata and reprocessed geopositions. Tagbase includes an integrated set of tools for importing tag datasets into the system effortlessly, and provides reporting utilities to interactively view standard outputs in graphical and tabular form. Data from the system can also be easily exported or dynamically coupled to GIS and other analysis packages. Tagbase is scalable and has been ported to a range of database management systems to support the needs of the tagging community, from individual investigators to large scale tagging programs. Tagbase represents a mature initiative with users at several institutions involved in marine electronic tagging research

    Active Electric Imaging: Body-Object Interplay and Object's β€œElectric Texture”

    Get PDF
    This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this β€œglobal effect” of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles (β€œlocal effect” or β€œobject's electric texture”). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information

    Development and regeneration of the crushing dentition of skates (Rajidae)

    Get PDF
    Sharks and rays (elasmobranchs) have the remarkable capacity to continuously regenerate their teeth. The polyphyodont system is considered the ancestral condition of the gnathostome dentition. Despite this shared regenerative ability, sharks and rays exhibit dramatic interspecific variation in their tooth morphology. Ray (batoidea) teeth typically constitute crushing pads of flattened teeth, whereas shark teeth are pointed, multi-cuspid units. Although recent research has addressed the molecular development of the shark dentition, little is known about that of the ray. Furthermore, how dental diversity within the elasmobranch lineage is achieved remains unknown. Here, we examine dental development and regeneration in two Batoid species: the thornback skate (Raja clavata) and the little skate (Leucoraja erinacea). Using in situ hybridization and immunohistochemistry, we examine the expression of a core gnathostome dental gene set during early development of the skate dentition and compare it to development in the shark. Elasmobranch tooth development is highly conserved, with sox2 likely playing an important role in the initiation and regeneration of teeth. Alterations to conserved genes expressed in an enamel knot-like signalling centre may explain the morphological diversity of elasmobranch teeth, thereby enabling sharks and rays to occupy diverse dietary and ecological niches

    Ξ²-Diversity and Species Accumulation in Antarctic Coastal Benthos: Influence of Habitat, Distance and Productivity on Ecological Connectivity

    Get PDF
    High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in Ξ²-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and β–diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on Ξ²-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance

    Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata

    Get PDF
    Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the β€˜aragonitic line’. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P.fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the β€˜aragonitic line’, and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth
    • …
    corecore