15 research outputs found

    Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions

    Get PDF
    Undesirable tissue adhesions remain one of the most common and dreaded postoperative complications. Biocompatible nanofibrous mats with antiadhesive surfaces represent a promising barrier method for preventing the formation of adhesions. The material developed in this work was inspired by the natural superhydrophobic lotus leaf nanostructure, which was mimicked by a unique combination of needleless electrospraying and electrospinning technology of poly-ε-caprolactone (PCL). The surface hydrophobicity of electrosprayed nanodroplets was further enhanced by cold plasma modification using the chemical vapor deposition (CVD) method with hexamethyldisiloxane (HMDSO). The treatment led to a successful decrease in surface wettability of our samples. Morphology (scanning electron microscopy), wettability (contact angle) and chemical composition (FTIR analysis) were observed for a period of six months to track possible changes; the obtained results verified the presence of HMDSO during the whole time period. Cytocompatibility was confirmed in vitro with 3T3 mouse fibroblasts according to the norm ISO 10993-5. Cell adhesion and proliferation were assessed in vitro by metabolic MTT assay and fluorescence microscopy after 4, 7, and 14 days. Antiadhesive behaviour was confirmed by atomic force microscopy and ex vivo by peel test 90° with intestinal tissue, the final structure has a great potential to reduce postoperative tissue adhesions

    The Combination of Hydrogels with 3D Fibrous Scaffolds Based on Electrospinning and Meltblown Technology

    No full text
    This study presents the advantages of combining three-dimensional biodegradable scaffolds with the injection bioprinting of hydrogels. This combination takes advantage of the synergic effect of the properties of the various components, namely the very favorable mechanical and structural properties of fiber scaffolds fabricated from polycaprolactone and the targeted injection of a hydrogel cell suspension with a high degree of hydrophilicity. These properties exert a very positive impact in terms of promoting inner cell proliferation and the ability to create compact tissue. The scaffolds were composed of a mixture of microfibers produced via meltblown technology that ensured both an optimal three-dimensional porous structure and sufficient mechanical properties, and electrospun nanofibers that allowed for good cell adhesion. The scaffolds were suitable for combination with injection bioprinting thanks to their mechanical properties, i.e., only one nanofibrous scaffold became deformed during the injection process. A computer numerical-control manipulator featuring a heated printhead that allowed for the exact dosing of the hydrogel cell suspension into the scaffolds was used for the injection bioprinting. The hyaluronan hydrogel created a favorable hydrophilic ambiance following the filling of the fiber structure. Preliminary in vitro testing proved the high potential of this combination with respect to the field of bone tissue engineering. The ideal structural and mechanical properties of the tested material allowed osteoblasts to proliferate into the inner structure of the sample. Further, the tests demonstrated the significant contribution of printed hydrogel-cell suspension to the cell proliferation rate. Thus, the study led to the identification of a suitable hydrogel for osteoblasts

    Intestinal Anastomotic Healing: What do We Know About Processes Behind Anastomotic Complications

    No full text
    Colorectal surgery has developed rapidly in the recent decades. Nevertheless, colorectal anastomotic leakage continues to appear postoperatively in unpleasant rates and leads to life-threatening conditions. The development of valid complication-preventing methods is inefficient in many aspects as we are still lacking knowledge about the basics of the process of anastomotic wound healing in the gastrointestinal tract. Without the proper understanding of the crucial mechanisms, research for prevention of anastomotic leakage is predestined to be unsuccessful. This review article discusses known pathophysiological mechanisms together with the most lately found processes to be further studied. The aim of the article is to facilitate the orientation in the topic, support the better understanding of known mechanisms and suggest promising possibilities and directions for further research.ISSN:2296-875

    Reinforcement of Colonic Anastomosis with Improved Ultrafine Nanofibrous Patch: Experiment on Pig

    No full text
    Anastomotic leakage is a dreadful complication in colorectal surgery. It has a negative impact on postoperative mortality, long term life quality and oncological results. Nanofibrous polycaprolactone materials have shown pro-healing properties in various applications before. Our team developed several versions of these for healing support of colorectal anastomoses with promising results in previous years. In this study, we developed highly porous biocompatible polycaprolactone nanofibrous patches. We constructed a defective anastomosis on the large intestine of 16 pigs, covered the anastomoses with the patch in 8 animals (Experimental group) and left the rest uncovered (Control group). After 21 days of observation we evaluated postoperative changes, signs of leakage and other complications. The samples were assessed histologically according to standardized protocols. The material was easy to work with. All animals survived with no major complication. There were no differences in intestinal wall integrity between the groups and there were no signs of anastomotic leakage in any animal. The levels of collagen were significantly higher in the Experimental group, which we consider to be an indirect sign of higher mechanical strength. The material shall be further perfected in the future and possibly combined with active molecules to specifically influence the healing process

    Reinforcement of Colonic Anastomosis with Improved Ultrafine Nanofibrous Patch: Experiment on Pig

    No full text
    Anastomotic leakage is a dreadful complication in colorectal surgery. It has a negative impact on postoperative mortality, long term life quality and oncological results. Nanofibrous polycaprolactone materials have shown pro-healing properties in various applications before. Our team developed several versions of these for healing support of colorectal anastomoses with promising results in previous years. In this study, we developed highly porous biocompatible polycaprolactone nanofibrous patches. We constructed a defective anastomosis on the large intestine of 16 pigs, covered the anastomoses with the patch in 8 animals (Experimental group) and left the rest uncovered (Control group). After 21 days of observation we evaluated postoperative changes, signs of leakage and other complications. The samples were assessed histologically according to standardized protocols. The material was easy to work with. All animals survived with no major complication. There were no differences in intestinal wall integrity between the groups and there were no signs of anastomotic leakage in any animal. The levels of collagen were significantly higher in the Experimental group, which we consider to be an indirect sign of higher mechanical strength. The material shall be further perfected in the future and possibly combined with active molecules to specifically influence the healing process
    corecore