336 research outputs found

    The 22nd annual meeting of the European Tissue Repair Society (ETRS) in Athens, Greece

    Get PDF
    The 22nd Annual Meeting of the European Tissue Repair Society, Athens, Greece, October 4 to 5, 2012 informed about pathophysiological mechanisms in tissue repair and on the development of clinical treatments of chronic wounds, fibrosis, and cancer, considering recent advances in molecular biology and biotechnology

    Effect of hyperglycaemic conditions on the response of human periodontal ligament fibroblasts to mechanical stretching

    Full text link
    Objectives: The aim of the present study was to investigate the impact of high glucose concentration on the response of human periodontal ligament fibroblasts (PDLFs) to cyclic tensile strain. Materials and methods: Human PDLFs were incubated under normal or high glucose conditions, and then were subjected to cyclic tensile stretching (8 per cent extension, 1 Hz). Gene expression was determined by quantitative real-time polymerase chain reaction. Intracellular reactive oxygen species (ROS) were determined by the 2',7'-dichlorofluorescein-diacetate assay, activation of mitogen-activated protein kinase (MAPK) was monitored by western analysis and osteoblastic differentiation was estimated with Alizarin Red-S staining. Results: Cyclic tensile stretching of PDLF leads to an immediate activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), as well as to the increased expression of the transcription factor c-fos, known to regulate many osteogenesis-related genes. At later time points, the alkaline phosphatase and osteopontin genes were also upregulated. Hyperglycaemic conditions inhibited these effects. High glucose conditions were unable to increase ROS levels, but they increased the medium's osmolality. Finally, increase of osmolality mimics the inhibitory effect of hyperglycaemia on MAPK activation, c-fos and osteoblast-specific gene markers' upregulation, as well as osteogenic differentiation capacity. Conclusion: Our findings indicate that under high glucose conditions, human PDLFs fail to adequately respond to mechanical deformation, while their strain-elicited osteoblast differentiation ability is deteriorated. The aforementioned effects are most probably mediated by the increased osmolality under hyperglycaemic conditions

    Dynamic interplay between breast cancer cells and normal endothelium mediates the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells

    Get PDF
    Background Breast cancer\u2013endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells. Methods To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties. Results BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome \u3b25 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC. Conclusions and general significance BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behavior and properties

    Cytotoxicity and estrogenicity of a novel 3-dimensional printed orthodontic aligner

    Full text link
    INTRODUCTION Orthodontic aligners printed with in-office 3-dimensional (3D) procedures have been described, but no data on their biocompatibility exist. This study investigates the cytotoxicity and estrogenicity of a 3D-printed orthodontic aligner by assessing its biological and behavioral effects. METHODS Ten sets of 1 type of aligner were immersed in sterile deionized water for 14 days, and the cytotoxicity and estrogenicity of released factors were assessed via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays on human gingival fibroblasts and the estrogen-sensitive MCF-7 and the estrogen-insensitive MDA-MB-231 breast cancer cell lines. 17β-Estradiol and bisphenol-A were used as positive controls. The statistical analysis of data was performed with generalized linear models at a 0.05 level of significance. RESULTS No signs of cytotoxicity were seen for the aligner samples for concentrations (v/v) of 20% (P = 0.32), 10% (P = 0.79), or 5% (P = 0.76). The antioxidant activity expressed as the capacity to reduce intracellular levels of reactive oxygen species was not affected in the aligner samples (P = 0.08). No significant estrogenicity was induced by the aligner samples compared with eluents from the negative control for both MCF-7 (P = 0.65) and MDA-MB-231 (P = 0.78). As expected, 17β-Estradiol and bisphenol-A stimulated MCF-7 cell proliferation, whereas no effect was observed on MDA-MB-231 cells. CONCLUSIONS In conclusion, if any factors were released during the 14-day aging of 3D-printed aligners in water, these were not found to be cytotoxic for human gingival fibroblasts and did not affect their intracellular reactive oxygen species levels. Moreover, no estrogenic effects of these putative eluates were observed based on an E-screen assay

    ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo

    Get PDF
    Estrogen receptors (ERs) have pivotal roles in the development and progression of triple-negative breast cancer (TNBC). Interactions among cancer cells and tumor microenvironment are orchestrated by the extracellular matrix that is rapidly emerging as prominent contributor of fundamental processes of breast cancer progression. Early studies have correlated ER beta expression in tumor sites with a more aggressive clinical outcome, however ER beta exact role in the progression of TNBC remains to be elucidated. Herein, we introduce the functional role of ER beta suppression following isolation of monoclonal cell populations of MDA-MB-231 breast cancer cells transfected with shRNA against human ESR2 that permanently resulted in 90% reduction of ER beta mRNA and protein levels. Further, we demonstrate that clone selection results in strongly reduced levels of the aggressive functional properties of MDA-MB-231 cells, by transforming their morphological characteristics, eliminating the mesenchymal-like traits of triple-negative breast cancer cells. Monoclonal populations of shER beta MDA-MB-231 cells undergo universal matrix reorganization and pass on a mesenchymal-to-epithelial transition state. These striking changes are encompassed by the total prevention of tumorigenesis in vivo following ER beta maximum suppression and isolation of monoclonal cell populations in TNBC cells. We propose that these novel findings highlight the promising role of ER beta targeting in future pharmaceutical approaches for managing the metastatic dynamics of TNBC breast cancer

    ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo

    Get PDF
    Estrogen receptors (ERs) have pivotal roles in the development and progression of triple-negative breast cancer (TNBC). Interactions among cancer cells and tumor microenvironment are orchestrated by the extracellular matrix that is rapidly emerging as prominent contributor of fundamental processes of breast cancer progression. Early studies have correlated ERβ expression in tumor sites with a more aggressive clinical outcome, however ERβ exact role in the progression of TNBC remains to be elucidated. Herein, we introduce the functional role of ERβ suppression following isolation of monoclonal cell populations of MDA-MB-231 breast cancer cells transfected with shRNA against human ESR2 that permanently resulted in 90% reduction of ERβ mRNA and protein levels. Further, we demonstrate that clone selection results in strongly reduced levels of the aggressive functional properties of MDA-MB-231 cells, by transforming their morphological characteristics, eliminating the mesenchymal-like traits of triple-negative breast cancer cells. Monoclonal populations of shERβ MDA-MB-231 cells undergo universal matrix reorganization and pass on a mesenchymal-to-epithelial transition state. These striking changes are encompassed by the total prevention of tumorigenesis in vivo following ERβ maximum suppression and isolation of monoclonal cell populations in TNBC cells. We propose that these novel findings highlight the promising role of ERβ targeting in future pharmaceutical approaches for managing the metastatic dynamics of TNBC breast cancer

    Expression of matrix metalloproteinase-1 (MMP-1) in Wistar rat's intervertebral disc after experimentally induced scoliotic deformity

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A scoliotic deformity on intervertebral discs may accelerate degeneration at a molecular level with the production of metalloproteinases (MMPs). In the present experimental study we evaluated the presence of MMP-1 immunohistochemically after application of asymmetric forces in a rat intervertebral disc and the impact of the degree of the deformity on MMP-1 expression.</p> <p>Material-Method</p> <p>Thirty female Wistar rats (aged 2 months old, weighted 200 ± 10 grams) were used. All animals were age, weight and height matched. A mini Ilizarov external fixator was applied at the base of a rat tail under anaesthesia in order to create a scoliotic deformity of the intervertebral disc between the 9<sup>th </sup>and 10<sup>th </sup>vertebrae. Rats were divided into three groups according to the degree of the deformity. In group I, the deformity was 10°, in group II 30° and in group III 50°. The rats were killed 35 days after surgery. The discs were removed along with the neighbouring vertebral bodies, prepared histologically and stained immunohistochemically. Immunopositivity of disc's cells for MMP-1 was determined using a semi-quantitative scored system.</p> <p>Results</p> <p>MMP-1 immunopositivity was detected in disc cells of annulus fibrosus of all intervertebral disc specimens examined. The percentage of MMP-1 positive disc cells in annulus fibrosus in group I, II and III were 20%, 43% and 75%, respectively. MMP-1 positivity was significantly correlated with the degree of the deformity (p < 0,001). An increase of chondrocyte-like disc cells was observed in the outer annulus fibrosus and at the margin of the intervertebral disc adjacent to the vertebral end plates. The difference in the proportion of MMP-1 positive disc cells between the convex and the concave side was statistically not significant in group I (p = 0,6), in group II this difference was statistically significant (p < 0,01). In group III the concave side showed a remarkable reduction in the number of disc's cells and a severe degeneration of matrix microstructure.</p> <p>Conclusion</p> <p>The present study showed that an experimentally induced scoliotic deformity on a rat tail intervertebral disc results in over-expression of MMP-1, which is dependent on the degree of the deformity and follows a dissimilar distribution between the convex and the concave side.</p

    Phytochemical analysis and antioxidant potential of the phytonutrient-rich decoction of Cichorium spinosum and C. intybus.

    Get PDF
    The Cretan diet as the basis of the Mediterranean diet, has provided traditional remedies for the general well-being through the long-established consumption of cooked wild greens and vegetables. The intake of water decoctions of Cichorium spinosum and Cichorium intybus in the context of the daily dietary regime in Greece, has been long associated with “liver detoxifying” properties. In the current study, we performed an in depth investigation of the water decoctions traditionally prepared from C. spinosum and C. intybus, through qualitative UHPLC-HRMS profiling and direct quantification of cichoric and caftaric acid, as major antioxidant components of the decoction. In addition, we developed a one-step Countercurrent Chromatography method for the isolation of the two phenolic acids, along with a sulfoconjugate sesquiterpene lactone present only in the Cretan C. spinosum. All water decoctions were found not cytotoxic in human fibroblasts, whereas they all significantly reduce the intracellular reactive oxygen species, in consistency with the major presence of strong antioxidant compounds such as cichoric acid. This work demonstrates that the intake of decoction in doses suggested by the Greek traditional use is comparable to the ingestion of a phytomedical preparation of antioxidants. These results contribute to our current knowledge on the beneficial health effect of the Cretan diet
    corecore