49 research outputs found

    The 14-3-3 proteins in regulation of cellular metabolism

    Get PDF
    AbstractThirty years ago, it was discovered that 14-3-3 proteins could activate enzymes involved in amino acid metabolism. In the following decades, 14-3-3s have been shown to be involved in many different signaling pathways that modulate cellular and whole body energy and nutrient homeostasis. Large scale screening for cellular binding partners of 14-3-3 has identified numerous proteins that participate in regulation of metabolic pathways, although only a minority of these targets have yet been subject to detailed studies. Because of the wide distribution of potential 14-3-3 targets and the resurging interest in metabolic pathway control in diseases like cancer, diabetes, obesity and cardiovascular disease, we review the role of 14-3-3 proteins in the regulation of core and specialized cellular metabolic functions. We cite illustrative examples of 14-3-3 action through their direct modulation of individual enzymes and through regulation of master switches in cellular pathways, such as insulin signaling, mTOR- and AMP dependent kinase signaling pathways, as well as regulation of autophagy. We further illustrate the quantitative impact of 14-3-3 association on signal response at the target protein level and we discuss implications of recent findings showing 14-3-3 protein membrane binding of target proteins

    Functional studies of tyrosine hydroxylase missense variants reveal distinct patterns of molecular defects in dopa-responsive dystonia

    Get PDF
    Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients.publishedVersio

    ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications

    Get PDF
    Neurometabolic diseases (NMDs) are typically caused by genetic abnormalities affecting enzyme functions, which in turn interfere with normal development and activity of the nervous system. Although the individual disorders are rare, NMDs are collectively relatively common and often lead to lifelong difficulties and high societal costs. Neuropsychiatric manifestations, including ADHD symptoms, are prominent in many NMDs, also when the primary biochemical defect originates in cells and tissues outside the nervous system. ADHD symptoms have been described in phenylketonuria, tyrosinemias, alkaptonuria, succinic semialdehyde dehydrogenase deficiency, X-linked ichthyosis, maple syrup urine disease, and several mitochondrial disorders, but are probably present in many other NMDs and may pose diagnostic and therapeutic challenges. Here we review current literature linking NMDs with ADHD symptoms. We cite emerging evidence that many NMDs converge on common neurochemical mechanisms that interfere with monoamine neurotransmitter synthesis, transport, metabolism, or receptor functions, mechanisms that are also considered central in ADHD pathophysiology and treatment. Finally, we discuss the therapeutic implications of these findings and propose a path forward to increase our understanding of these relationships.publishedVersio

    Regulation of tyrosine hydroxylase is preserved across different homo- and heterodimeric 14-3-3 proteins

    Get PDF
    Tyrosine hydroxylase (TH) is regulated by members of the 14-3-3 protein family. However, knowledge about the variation between 14-3-3 proteins in their regulation of TH is still limited. We examined the binding, effects on activation and dephosphorylation kinetics of tyrosine hydroxylase (TH) by abundant midbrain 14-3-3 proteins (β, η, ζ, γ and ε) of different dimer composition. All 14-3-3 homodimers and their respective 14-3-3ε-heterodimers bound with similar high affinity (Kd values of 1.4–3.8 nM) to serine19 phosphorylated human TH (TH-pS19). We similarly observed a consistent activation of bovine (3.3- to 4.4-fold) and human TH-pS19 (1.3–1.6 fold) across all the different 14-3-3 dimer species, with homodimeric 14-3-3γ being the strongest activator. Both hetero- and homodimers of 14-3-3 strongly inhibited dephosphorylation of TH-pS19, and we speculate if this is an important homeostatic mechanism of 14-3-3 target-protein regulation in vivo. We conclude that TH is a robust interaction partner of different 14-3-3 dimer types with moderate variability between the 14-3-3 dimers on their regulation of TH.publishedVersio

    Tyrosinemia Type 1 and symptoms of ADHD: Biochemical mechanisms and implications for treatment and prognosis

    Get PDF
    Hereditary tyrosinemia Type 1 (HT‐1) is a rare metabolic disease where the enzyme catalyzing the final step of tyrosine breakdown is defect, leading to accumulation of toxic metabolites. Nitisinone inhibits the degradation of tyrosine and thereby the production of harmful metabolites, however, the concentration of tyrosine also increases. We investigated the relationship between plasma tyrosine concentrations and cognitive functions and how tyrosine levels affected enzyme activities of human tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2). Eight Norwegian children between 6 and 18 years with HT‐1 were assessed using questionnaires measuring Attention Deficit Hyperactivity Disorder (ADHD)‐symptoms and executive functioning. Recent and past levels of tyrosine were measured and the enzyme activities of TH and TPH2 were studied at conditions replicating normal and pathological tyrosine concentrations. We observed a significant positive correlation between mean tyrosine levels and inattention symptoms. While TH exhibited prominent substrate inhibition kinetics, TPH2 activity also decreased at elevated tyrosine levels. Inhibition of both enzymes may impair syntheses of dopamine, noradrenaline, and serotonin in brain tissue. Inattention in treated HT‐1 patients may be related to decreased production of these monoamines. Our results support recommendations of strict guidelines on plasma tyrosine levels in HT‐1. ADHD‐related deficits, particularly inattention, should be monitored in HT‐1 patients to determine whether intervention is necessary.publishedVersio

    Мотивационная политика предприятия как основа новой философии управления

    Get PDF
    В современной концепции управления ключевое место отводится человеку. Именно люди, характеризующиеся не только специальным образованием и профессиональными навыками, но и яркой индивидуальностью, способны генерировать новые идеи и решать непростые задачи в высококонкурентной и динамичной бизнес-среде. Такова закономерность в развитии экономических отношений и совершенствовании менеджмента организаций. Акценты в управлении компанией смещаются к идеологическим (культурным, духовным) ценностям предприятия, носителем которых является его персонал, конкретные сотрудники, способные в этих условиях обеспечивать эффективную работу в высококонкурентной среде

    Involvement of the 14-3-3 gene family in autism spectrum disorder and schizophrenia: Genetics, transcriptomics and functional analyses

    Get PDF
    The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia

    Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation

    Get PDF
    16 pags, 7 figs . -- The online version contains supplementary movie1: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-27657-y/MediaObjects/41467_2021_27657_MOESM3_ESM.mp4Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of dopamine (DA) and other catecholamines, and its dysfunction leads to DA deficiency and parkinsonisms. Inhibition by catecholamines and reactivation by S40 phosphorylation are key regulatory mechanisms of TH activity and conformational stability. We used Cryo-EM to determine the structures of full-length human TH without and with DA, and the structure of S40 phosphorylated TH, complemented with biophysical and biochemical characterizations and molecular dynamics simulations. TH presents a tetrameric structure with dimerized regulatory domains that are separated 15 Å from the catalytic domains. Upon DA binding, a 20-residue α-helix in the flexible N-terminal tail of the regulatory domain is fixed in the active site, blocking it, while S40-phosphorylation forces its egress. The structures reveal the molecular basis of the inhibitory and stabilizing effects of DA and its counteraction by S40-phosphorylation, key regulatory mechanisms for homeostasis of DA and TH.This research was supported by the grant PID2019-105872GB-I00/AEI/10.13039/ 501100011033 from the Spanish Ministry of Science and Innovation to J.M.V. and J.C. as well as FRIMEDBIO (261826) from the Research Council of Norway to A.M.; the Western Norway Regional Health Authorities (912246 to A.M. and 912264 to R.K.), the K.G.Peer reviewe

    Cell Death Inducing Microbial Protein Phosphatase Inhibitors—Mechanisms of Action

    No full text
    Okadaic acid (OA) and microcystin (MC) as well as several other microbial toxins like nodularin and calyculinA are known as tumor promoters as well as inducers of apoptotic cell death. Their intracellular targets are the major serine/threonine protein phosphatases. This review summarizes mechanisms believed to be responsible for the death induction and tumor promotion with focus on the interdependent production of reactive oxygen species (ROS) and activation of Ca2+/calmodulin kinase II (CaM-KII). New data are presented using inhibitors of specific ROS producing enzymes to curb nodularin/MC-induced liver cell (hepatocyte) death. They indicate that enzymes of the arachidonic acid pathway, notably phospholipase A2, 5-lipoxygenase, and cyclooxygenases, may be required for nodularin/MC-induced (and presumably OA-induced) cell death, suggesting new ways to overcome at least some aspects of OA and MC toxicity

    DOPA Homeostasis by Dopamine: A Control-Theoretic View

    Get PDF
    Dopamine (DA) is an important signal mediator in the brain as well as in the periphery. The term “dopamine homeostasis” occasionally found in the literature refers to the fact that abnormal DA levels can be associated with a variety of neuropsychiatric disorders. An analysis of the negative feedback inhibition of tyrosine hydroxylase (TH) by DA indicates, with support from the experimental data, that the TH-DA negative feedback loop has developed to exhibit 3,4-dihydroxyphenylalanine (DOPA) homeostasis by using DA as a derepression regulator. DA levels generally decline when DOPA is removed, for example, by increased oxidative stress. Robust DOPA regulation by DA further implies that maximum vesicular DA levels are established, which appear necessary for a reliable translation of neural activity into a corresponding chemical transmitter signal. An uncontrolled continuous rise (windup) in DA occurs when Levodopa treatment exceeds a critical dose. Increased oxidative stress leads to the successive breakdown of DOPA homeostasis and to a corresponding reduction in DA levels. To keep DOPA regulation robust, the vesicular DA loading requires close to zero-order kinetics combined with a sufficiently high compensatory flux provided by TH. The protection of DOPA and DA due to a channeling complex is discussed.publishedVersio
    corecore