27 research outputs found

    Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance

    Get PDF
    Varroa destructor is the most devastating parasite of the Western honeybee, Apis mellifera. In the light of the arm race opposing the host and its parasite, the population dynamics and genetic diversity of these organisms are key parameters. However, the life cycle of V. destructor is characterized by extreme inbreeding due to full sibling mating in the host brood cells. We here present an equation reflecting the evolution of inbreeding in such a clonal system, and compare our predictions with empirical data based on the analysis of seven microsatellite markers. This comparison revealed that the mites perform essentially incestuous mating in the beginning of the brood season. However, this pattern changes with the development of mite infestation. Despite the fact that the overall level of genetic diversity of the mites remained low through the season, multiple inbred lineages were identified in the mites we sampled in June. As a response to the decrease of brood availability and the increase of the parasite population in parallel in the colonies, these lineages recombined towards the end of the season as mites co-infest brood cells. Our results suggest that the ratio of the number of mite per brood cell in the colony determines the genetic structure of the populations of V. destructor. This intracolonial population dynamics has great relevance for the selection of acaricide resistance in V. destructor. If chemical treatments occur before the recombination phase, inbreeding will greatly enhance the fixation of resistance alleles at the colony level.Bayer AGhttp://www.elsevier.com/locate/meegid2018-06-30hb2017Zoology and Entomolog

    Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany

    Get PDF
    BackgroundTick-borne diseases are a major health risk for humans and dogs. In addition to collection and analysis of questing ticks, analysis of host- associated ticks for the presence of pathogens is a valuable method to gain insight into transmission patterns of tick-borne diseases.MethodsTicks were collected from dogs living in the Berlin/Brandenburg area. The three tick species Ixodes ricinus, Ixodes hexagonus and Dermacentor reticulatus were examined for the presence of Babesia spp., Borrelia spp., Rickettsia spp. and Anaplasmataceae. Conventional PCR followed by sequencing was used for pathogen detection and characterization.Results Babesia spp. were found in 2.5% and 3% of I. ricinus and I. hexagonus, respectively. Sequencing revealed the presence of Babesia microti, Babesia capreoli and Babesia venatorum. D. reticulatus were free of Babesia canis. Rickettsia spp. were detected in 61% of I. ricinus, 44% of I. hexagonus and 39% of D. reticulatus. Specifically detected were Rickettsia raoulti in D. reticulatus and I. hexagonus, Rickettsia helvetica in I. ricinus and I. hexagonus and Rickettsia monacensis in I. hexagonus. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis have been reported previously in I. ricinus (6.5% and 4.3%, respectively) and I. hexagonus (3.9% and 5.9%). Borrelia spp. were found in 11.6% of I. ricinus and 11.2% of I. hexagonus. Subsequent genospecies analysis revealed Borrelia afzelii, Borrelia garinii, Borrelia burgdorferi sensu stricto and Borrelia miyamotoi. Simultanous presence of more than one pathogen was found in 20% of I. ricinus and in 59% of I. hexagonus whereas the total frequency of any pathogen was 65% in I. ricinus, 59% in I. hexagonus and 64% in D. reticulatus. Ticks in which A. phagocytophilum was detected had a significantly increased risk of also containing Rickettsia. Ticks harbouring a pathogen had significantly higher scutal indices than ticks without presence of any pathogen.ConclusionsFrequencies of potential human or canine pathogens in ticks were considerable and DNA of all four groups of pathogens was detected. Differences in scutal indices might suggest that pathogens are frequently taken up by ticks when feeding on dogs in Berlin/Brandenburg

    Efficacy of an imidacloprid/flumethrin collar against fleas, ticks, mites and lice on dogs

    Get PDF
    BACKGROUND: The studies reported here were conducted to ascertain the efficacy of imidacloprid/flumethrin incorporated in a slow-release matrix collar, against infestations of dogs by fleas, ticks, mites and lice. Efficacy was evaluated against the flea Ctenocephalides felis felis, the ticks Rhipicephalus sanguineus, Ixodes ricinus, Ixodes scapularis, Dermacentor reticulatus and Dermacentor variabilis, the mite Sarcoptes scabiei and the biting louse Trichodectes canis. METHODS: Groups of collar-treated dogs (n = 7–10) were infested with fleas and/or ticks at monthly intervals at least, over a period of up to 8 months. Efficacy against fleas was evaluated 24 to 48 h after treatment and 24 h after each re-infestation. Efficacy against ticks was evaluated at 48 h (acaricidal), 6 h (repellent) and 48 h (sustained) after infestation. The effect of regular shampooing or immersion in water on the efficacy of the collars was also tested. Efficacy against flea larvae was assessed by incubating blanket samples after dog contact with viable flea eggs. Effectiveness against lice and mites was evaluated after treatment of naturally infested animals. With the exception of the mites, efficacy was calculated by comparison with untreated negative control groups. RESULTS: Efficacy against fleas (24 h) generally exceeded 95%, and against flea larvae it exceeded 99% for 8 months. Sustained acaricidal (48 h) efficacy, covering a period of 8 months was 100% against I. ricinus, starting 2 days after treatment (in vivo), and 100% against I. scapularis (in vitro), above 97% against R. sanguineus, generally above 97% against D. reticulatus and above 90% for D. variabilis. Repellent (6 h) efficacy 2 days after treatment and continuing for 8 months was consistently 100% against I. ricinus, and above 90% against R. sanguineus. Regular shampooing affected efficacy against fleas and ticks to a lesser extent than regular immersion in water. The collars eliminated Trichodectes canis within 2 days and Sarcoptes scabiei within 3 months. CONCLUSION: The rapid insecticidal and acaricidal properties of the medicated collars against newly-acquired infestations of fleas and ticks and their sustained high levels of preventive efficacy have been clearly shown. Consequently they have the potential to prevent the transmission of vector-borne diseases and other conditions directly associated with infestation throughout an entire season of parasite abundance.DS, EMK, JJF and WD designed the study design and protocols and JJF and EMK carried out the studies. DS, JJF, EMK and WD and IGH compiled and analysed the data. IGH was responsible for the first draft of the manuscript, which was then substantially revised by all authors. All authors read and approved the final manuscript.These clinical studies were completely funded by Bayer Animal Health GmbH, Monheim, Germany, of which D. Stanneck (Germany) and K. Krieger are employees, and by Bayer HealthCare LLC, Animal Health (USA). ClinVet is an independent Contract Development Organisation, which was contracted to manage the conduct of a part of these studies. I.G. Horak is a long-term, contract employee of Clinvet and an Honorary Professor at the Universities of the Free State and Pretoria. The authors are sincerely grateful to all monitors, investigators and the staff of the study locations either linked to the authors or serving as independent CROs who took part in the numerous studies and ensured that the high GCP and GLP standards were adhered to.http://www.parasitesandvectors.com/content/5/1/102am2013ab201

    Evaluation of the long-term efficacy and safety of an imidacloprid 10%/flumethrin 4.5% polymer matrix collar (Seresto®) in dogs and cats naturally infested with fleas and/or ticks in multicentre clinical field studies in Europe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of these two GCP multicentre European clinical field studies was to evaluate the long-term efficacy and safety of a new imidacloprid/flumethrin collar (Seresto<sup>®</sup>, Bayer AnimalHealth, Investigational Veterinary Product(IVP)) in dogs and cats naturally infested with fleas and/or ticks in comparison to a dimpylat collar ("Ungezieferband fuer Hunde/fuer Katzen", Beaphar, Control Product (CP)).</p> <p>Methods</p> <p>232 (IVP) and 81 (CP) cats and 271(IVP) and 129 (CP) dogs were treated with either product according to label claims and formed the safety population. Flea and tick counts were conducted in monthly intervals for up to 8 months in the efficacy subpopulation consisting of 118 (IVP) + 47 (CP) cats and 197 (IVP) + 94 (CP) dogs. Efficacy was calculated as reduction of infestation rate within the same treatment group and statistically compared between the two treatment groups.</p> <p>Results</p> <p>Preventive efficacy against fleas in cats/dogs varied in the IVP group between 97.4%/94.1% and 100%/100% (overall mean: 98.3%/96.7%) throughout the 8 month period and in the CP group between 57.1%/28.2% and 96.1%/67.8% (overall mean: 79.3%/57.9%). Preventive efficacy against ticks in cats/dogs varied in the IVP group between 94.0%/91.2% and 100%/100% (overall mean: 98.4%/94.7%) throughout the 8 month period and in the CP group between 90.7%/79.9% and 100%/88.0% (overall mean: 96.9%/85.6%). The IVP group was statistically non-inferior to the CP group, and on various assessment days, statistical superiority was proven for flea and tick count reduction in dogs and cats. Both treatments proved to be safe in dogs and cats with mainly minor local observations at the application site. There was moreover, no incidence of any mechanical problem with the collar in dogs and cats during the entire study period.</p> <p>Conclusions</p> <p>The imidacloprid/flumethrin collar proved to reduce tick counts by at least 90% and flea counts by at least 95% for a period of at least 7-8 months in cats and dogs under field conditions. Therefore, it can be used as sustainable long-term preventative, covering the whole flea and tick season.</p

    recommendations from the CVBD World Forum

    Get PDF
    The human-animal bond has been a fundamental feature of mankind's history for millennia. The first, and strongest of these, man's relationship with the dog, is believed to pre-date even agriculture, going back as far as 30,000 years. It remains at least as powerful today. Fed by the changing nature of the interactions between people and their dogs worldwide and the increasing tendency towards close domesticity, the health of dogs has never played a more important role in family life. Thanks to developments in scientific understanding and diagnostic techniques, as well as changing priorities of pet owners, veterinarians are now able, and indeed expected, to play a fundamental role in the prevention and treatment of canine disease, including canine vector-borne diseases (CVBDs).The CVBDs represent a varied and complex group of diseases, including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, leishmaniosis, rickettsiosis and thelaziosis, with new syndromes being uncovered every year. Many of these diseases can cause serious, even life-threatening clinical conditions in dogs, with a number having zoonotic potential, affecting the human population.Today, CVBDs pose a growing global threat as they continue their spread far from their traditional geographical and temporal restraints as a result of changes in both climatic conditions and pet dog travel patterns, exposing new populations to previously unknown infectious agents and posing unprecedented challenges to veterinarians.In response to this growing threat, the CVBD World Forum, a multidisciplinary group of experts in CVBDs from around the world which meets on an annual basis, gathered in Nice (France) in 2011 to share the latest research on CVBDs and discuss the best approaches to managing these diseases around the world.As a result of these discussions, we, the members of the CVBD Forum have developed the following recommendations to veterinarians for the management of CVBDs

    Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA

    Get PDF
    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes

    The synergistic action of imidacloprid and flumethrin and their release kinetics from collars applied for ectoparasite control in dogs and cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control of tick and flea burdens in dogs and cats has become essential to the control of important and emerging vector borne diseases, some of which are zoonoses. Flea worry and flea bite hypersensitivity are additionally a significant disease entity in dogs and cats. Owner compliance in maintaining the pressure of control measures has been shown to be poor. For these reasons efforts are continuously being made to develop ectoparasiticides and application methods that are safe, effective and easy to apply for pet owners. A new polymer matrix collar has recently been developed which is registered for 8 months use in cats and dogs. The basic properties of this collar have been investigated in several <it>in vitro </it>and <it>in vivo </it>studies.</p> <p>Methods</p> <p>The effects of imidacloprid, flumethrin and the combination were evaluated in vitro by means of whole cell voltage clamp measurement experiments conducted on isolated neuron cells from <it>Spodoptera frugiperda</it>. The in vitro efficacy of the two compounds and the combination against three species of ticks and their life stages and fleas were evaluated in a dry surface glass vial assay. The kinetics of the compounds over time in the collar were evaluated by the change in mass of the collar and measurement of the surface concentrations and concentrations of the actives in the collar matrix by HPLC. Hair clipped from collar treated dogs and cats, collected at various time points, was used to assess the acaricidal efficacy of the actives ex vivo.</p> <p>Results</p> <p>An <it>in vitro </it>isolated insect nerve model demonstrated the synergistic neurotoxic effects of the pyrethroid flumethrin and the neonicotinoid imidacloprid. An <it>in vitro </it>glass vial efficacy and mortality study against various life stages of the ticks <it>Ixodes ricinus, Rhipicephalus sanguineus </it>and <it>Dermacentor reticulatus </it>and against the flea (<it>Ctenocephalides felis</it>) demonstrated that the combination of these products was highly effective against these parasites. The release kinetics of these actives from a neck collar (compounded with 10% imidacloprid and 4.5% flumethrin) was extensively studied in dogs and cats under laboratory and field conditions. Acaricidal concentrations of the actives were found to be consistently released from the collar matrix for 8 months. None of the collar studies in dogs or cats were associated with any significant collar related adverse event.</p> <p>Conclusion</p> <p>Here we demonstrated the synergism between the pyrethroid flumethrin and the neonicotinoid imidacloprid, both provided in therapeutically relevant doses by a slow release collar matrix system over 8 months. This collar is therefore a convenient and safe tool for a long-term protection against ectoparasites.</p

    Vector-Borne Diseases - constant challenge for practicing veterinarians: recommendations from the CVBD World Forum

    Get PDF
    The human-animal bond has been a fundamental feature of mankind's history for millennia. The first, and strongest of these, man's relationship with the dog, is believed to pre-date even agriculture, going back as far as 30,000 years. It remains at least as powerful today. Fed by the changing nature of the interactions between people and their dogs worldwide and the increasing tendency towards close domesticity, the health of dogs has never played a more important role in family life. Thanks to developments in scientific understanding and diagnostic techniques, as well as changing priorities of pet owners, veterinarians are now able, and indeed expected, to play a fundamental role in the prevention and treatment of canine disease, including canine vector-borne diseases (CVBDs)
    corecore