21 research outputs found

    The type and frequency of metacognitions in women dieting, not dieting, and with anorexia nervosa

    Get PDF
    Metacognitions play a crucial role in the development and maintenance of psychiatric disorders, such as depression and anxiety. Its function in anorexia nervosa (AN), however, has been neglected. Examining the role of metacognitions in AN may prove useful for developing the AN conceptualization currently lacking. Additionally, it may provide a desperately needed new route for AN treatment, as no efficacious treatment for adult AN is available to date. This study aimed to build on preliminary findings suggesting that individuals with AN are characterized by the cognitive attentional syndrome (CAS), the vital component in the Self-regulatory Executive Function (S-REF) model underlying metacognitive processes. Hence, quantitative and qualitative measures of individuals with AN, dieting, and non-dieting adult women were examined to ascertain whether these groups embodied differences in their metacognitive frequency and nature. ANOVA, bivariate correlation, and ANCOVA were used for data analysis. Findings showed that the AN sample experienced higher overall metacognitions; particularly negative metacognitions and metacognitions around control. When anxiety and depression were controlled for, however, the association became non-significant. Nonetheless, anxious and depressive symptoms are greatly intertwined with eating symptoms and increased metacognitions in the AN sample are still highly plausible. Metacognitive themes endorsed by the AN sample were around sociability and control. Thought control strategies were found to be the same in all groups; however, the AN sample endorsed a higher utilization of punishment and a lower utilization of distraction. Several limitations including small AN sample size and no psychiatric control group should be taken into account. Overall, however, findings suggested that, because the AN sample was characteristic of the CAS and the S-REF model, dysfunctional metacognitions may be worth targeting in AN treatment

    In-situ deformation monitoring of thin electrochemically deposited copper lines during thermo-mechanical pulsing

    Get PDF
    In semiconductor industry, the development of the last years led to smaller and smaller devices in order to maximize efficiency and minimize costs. As a result, a miniaturization of the test structures is required as well as a proper method to monitor gradual deformation processes during repetitive thermal cycling. Thin metal films, e.g., Cu are commonly used in power semiconductor devices. Rapid temperature changes combined with a mismatch in thermal expansion coefficients of the different materials in the layer stack lead to thermo-mechanical stresses and as a result to deformation of the metallization. In order to realize high heating rates (up to 106 K/s) and to be able to observe deformation on the metallization surface, polyheater structures are used. There, a polysilicon layer works as a heating plate (Joule heating) for the Cu layer above, allowing repetitive heating and cooling on short timescales. The temperature of the system is measured using an integrated sensor. Since the deformation features, e.g. slip bands and extrusions, are on the sub-micron length scale, a scanning electron microscope (SEM) is necessary for in-situ deformation monitoring. This novel approach provides the possibility to observe the gradual deformation of metallizations under variable test parameters at high magnification and in vacuum. As test structures, 20x20x300 ”m³ Cu lines with different types of copper on top of the polysilicon were chosen to be able to observe the surface as well as the side walls of a metallization structure. It is revealed, that different Cu grain microstructures lead to differences in deformation behavior during thermo-mechanical cycling. Videos of the deformation process and EBSD images are presented to demonstrate the method

    Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study

    Get PDF
    Voids in face-centered cubic (fcc) metals are commonly assumed to form via the aggregation of vacancies; however, the mechanisms of vacancy clustering and diffusion are not fully understood. In this study, we use computational modeling to provide a detailed insight into the structures and formation energies of primary vacancy clusters, mechanisms and barriers for their migration in bulk copper, and how these properties are affected at simple grain boundaries. The calculations were carried out using embedded atom method (EAM) potentials and density functional theory (DFT) and employed the site-occupation disorder code (SOD), the activation relaxation technique nouveau (ARTn) and the knowledge led master code (KLMC). We investigate stable structures and migration paths and barriers for clusters of up to six vacancies. The migration of vacancy clusters occurs via hops of individual constituent vacancies with di-vacancies having a significantly smaller migration barrier than mono-vacancies and other clusters. This barrier is further reduced when di-vacancies interact with grain boundaries. This interaction leads to the formation of self-interstitial atoms and introduces significant changes into the boundary structure. Tetra-, penta-, and hexa-vacancy clusters exhibit increasingly complex migration paths and higher barriers than smaller clusters. Finally, a direct comparison with the DFT results shows that EAM can accurately describe the vacancy-induced relaxation effects in the Cu bulk and in grain boundaries. Significant discrepancies between the two methods were found in structures with a higher number of low-coordinated atoms, such as penta-vacancies and di-vacancy absortion by grain boundary. These results will be useful for modeling the mechanisms of diffusion of complex defect structures and provide further insights into the structural evolution of metal films under thermal and mechanical stress

    Microstructural influence on the cyclic electro mechanical behaviour of ductile films on polymer substrates

    Get PDF
    When ductile metal films on compliant polymer substrates are strained in tension catastrophic failure can be suppressed by the substrate, thus allowing for their use in flexible electronics and sensors. However, the charge carrying ductile films must be of an optimum thickness and microstructure for the suppression of cracking to occur. Studies of strained films on polymer substrates tend to have more emphasis on the electrical properties and thickness effects than on the film microstructure or deformation behaviour. To address both the electrical degradation and deformation behaviour of metal films supported by polymer substrates two types of combined electro-mechanical in-situ tests were performed. First, is a combination of in-situ resistance measurements with in-situ confocal scanning laser microscopy imaging of the film surface during cycling. The 4 point probe resistance measurements allow for the examination of the changes in resistance with strain, while the surface imaging permits the visualization of extrusion and crack formation. Second, is the combination of in-situ resistance with in-situ X-ray diffraction measurements of the film stresses during cycling. The combination of electrical measurements, surface imaging, and stress measurements allow for a complete picture of electromechanical behaviour needed for the improvement and future success of flexible electronic devices

    Annealing effects on the film stress and adhesion of tungsten titanium barrier layers

    Get PDF
    Tungsten titanium WTi alloys are important barrier materials in microelectronic devices. Thus the adhesion of WTi to silicate glass substrates influences the reliability of these devices. One factor that affects the adhesion of barrier layers are thermal treatments during and after fabrication. To address the impact of annealing, WTi films deposited on silicate glass substrates were subjected to different annealing treatments. The stress development in the WTi film has been monitored with wafer curvature and X ray diffraction. Quantitative measurements of the adhesion energies were performed using scratch testing to induce interface delamination. Imaging with atomic force microscopy provided the dimensions of the buckles to quantify adhesion energies. Focused ion beam crosssections were used to verify the failing interfaces and to inspect any deformation in the film and the substrate caused by scratch testing. It was found that as the annealing duration increased, the residual compressive stresses in the film and the adhesion energy increase

    Electropolishing—A Practical Method for Accessing Voids in Metal Films for Analyses

    No full text
    In many applications, voids in metals are observed as early degradation features caused by fatigue. In this publication, electropolishing is presented in the context of a novel sample preparation method that is capable of accessing voids in the interior of metal thin films along their lateral direction by material removal. When performed at optimized process parameters, material removal can be well controlled and the surface becomes smooth at the micro scale, resulting in the voids being well distinguishable from the background in scanning electron microscopy images. Compared to conventional cross-sectional sample preparation (embedded mechanical cross-section or focused ion beam), the accessed surface is not constrained by the thickness of the investigated film and laterally resolved void analyses are possible. For demonstrational purposes of this method, the distribution of degradation voids along the metallization of thermo-mechanically stressed microelectronic chips has been quantified

    Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study

    No full text
    Voids in face-centered cubic (fcc) metals are commonly assumed to form via the aggregation of vacancies; however, the mechanisms of vacancy clustering and diffusion are not fully understood. In this study, we use computational modeling to provide a detailed insight into the structures and formation energies of primary vacancy clusters, mechanisms and barriers for their migration in bulk copper, and how these properties are affected at simple grain boundaries. The calculations were carried out using embedded atom method (EAM) potentials and density functional theory (DFT) and employed the site-occupation disorder code (SOD), the activation relaxation technique nouveau (ARTn) and the knowledge led master code (KLMC). We investigate stable structures and migration paths and barriers for clusters of up to six vacancies. The migration of vacancy clusters occurs via hops of individual constituent vacancies with di-vacancies having a significantly smaller migration barrier than mono-vacancies and other clusters. This barrier is further reduced when di-vacancies interact with grain boundaries. This interaction leads to the formation of self-interstitial atoms and introduces significant changes into the boundary structure. Tetra-, penta-, and hexa-vacancy clusters exhibit increasingly complex migration paths and higher barriers than smaller clusters. Finally, a direct comparison with the DFT results shows that EAM can accurately describe the vacancy-induced relaxation effects in the Cu bulk and in grain boundaries. Significant discrepancies between the two methods were found in structures with a higher number of low-coordinated atoms, such as penta-vacancies and di-vacancy absortion by grain boundary. These results will be useful for modeling the mechanisms of diffusion of complex defect structures and provide further insights into the structural evolution of metal films under thermal and mechanical stress
    corecore