48,059 research outputs found
Concentration around the mean for maxima of empirical processes
In this paper we give optimal constants in Talagrand's concentration
inequalities for maxima of empirical processes associated to independent and
eventually nonidentically distributed random variables. Our approach is based
on the entropy method introduced by Ledoux.Comment: Published at http://dx.doi.org/10.1214/009117905000000044 in the
Annals of Probability (http://www.imstat.org/aop/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Single Boson Images Via an Extended Holstein Primakoff Mapping
The Holstein-Primakoff mapping for pairs of bosons is extended in order to
accommodate single boson mapping. The proposed extension allows a variety of
applications and especially puts the formalism at finite temperature on firm
grounds. The new mapping is applied to the O(N+1) anharmonic oscillator with
global symmetry broken down to O(N). It is explicitly demonstrated that
N-Goldstone modes appear. This result generalizes the Holstein-Primakoff
mapping for interacting boson as developed in ref.[1].Comment: 9 pages, LaTeX. Physical content unchanged. Unnecessary figure
remove
Radio frequency interference survey over the 1.0-10.4 GHz frequency range at the Goldstone-Venus Development Station
The results of a low sensitivity Radio Frequency Interference (RFI) survey carried out at the Venus Station of the Goldstone Communications Complex are reported. The data cover the spectral range from 1 GHz to 10.4 GHz with a 10-kHz instantaneous bandwidth. Frequency and power levels were observed using a sweep-frequency spectrum analyzer connected to a 1-m diameter antenna pointed at zenith. The survey was conducted from February 16, 1987 through February 24, 1987
Characteristics of Cherenkov Radiation in Naturally Occuring Ice
We revisit the theory of Cherenkov radiation in uniaxial crystals.
Historically, a number of flawed attempts have been made at explaining this
radiation phenomenon and a consistent error-free description is nowhere
available. We apply our calculation to a large modern day telescope - IceCube.
Being located at the Antarctica, this detector makes use of the naturally
occuring ice as a medium to generate Cherenkov radiation. However, due to the
high pressure at the depth of the detector site, large volumes of hexagonal ice
crystals are formed. We calculate how this affects the Cherenkov radiation
yield and angular dependence. We conclude that the effect is small, at most
about a percent, and would only be relevant in future high precision
instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For
radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to
determine the arrival direction, any variation in emission angle will directly
and linearly translate into a change in apparent neutrino direction. In
closing, we also describe a simple experiment to test this formalism, and
calculate the impact of anisotropy on light-yields from lead tungstate crystals
as used, for example, in the CMS calorimeter at the CERN LHC
Polariton lasing in high-quality Selenide-based micropillars in the strong coupling regime
We have designed and fabricated all-epitaxial ZnSe-based optical micropillars
exhibiting the strong coupling regime between the excitonic transition and the
confined optical cavity modes. At cryogenic temperatures, under non-resonant
pulsed optical excitation, we demonstrate single transverse mode polariton
lasing operation in the micropillars. Owing to the high quality factors of
these microstructures, the lasing threshold remains low even in micropillars of
the smallest diameter. We show that this feature can be traced back to a
sidewall roughness grain size below 3 nm, and to suppressed in-plane polariton
escape.Comment: 5 pages, 3 figure
The NASA SETI sky survey: Recent developments
NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future
Tunneling Spectroscopy and Vortex Imaging in Boron-Doped Diamond
We present the first scanning tunneling spectroscopy study of
single-crystalline boron doped diamond. The measurements were performed below
100 mK with a low temperature scanning tunneling microscope. The tunneling
density of states displays a clear superconducting gap. The temperature
evolution of the order parameter follows the weak coupling BCS law with
. Vortex imaging at low magnetic field also
reveals localized states inside the vortex core that are unexpected for such a
dirty superconductor.Comment: 4 pages, 4 figures, replaced with revised versio
Five-Dimensional Unification of the Cosmological Constant and the Photon Mass
Using a non-Riemannian geometry that is adapted to the 4+1 decomposition of
space-time in Kaluza-Klein theory, the translational part of the connection
form is related to the electromagnetic vector potential and a Stueckelberg
scalar. The consideration of a five-dimensional gravitational action functional
that shares the symmetries of the chosen geometry leads to a unification of the
four-dimensional cosmological term and a mass term for the vector potential.Comment: 8 pages, LaTe
Saturn's microwave spectrum: Implications for the atmosphere and the rings
Measurements of Saturn's disk temperature are compiled to determine the planet's microwave spectrum from 1 mm to 100 cm wavelength. The data were adjusted to conform with a common flux density scale. A model of Saturn's rings is used to remove the effects of the rings from the atmospheric component at centimeter and decimeter wavelengths. Theoretical spectra for a number of convective atmospheric models were computed and compared with the observed spectrum. Radiative-convective models with approximately solar composition and with an effective temperature of approximately 89 K are in good agreement with the observations. The agreement between the observed and theoretical spectra is a strong indication that gaseous ammonia is present in Saturn's atmosphere. A good fit to the data is obtained with an ammonia mixing ratio of approximately 5 x 10,0001. A comparison of the millimeter wavelength data with the best-fitting atmospheric spectrum indicates that the thermal component of the ring brightness temperature near 1 mm wavelength is approximately 25 k
Minimal Universal Extra Dimensions
Highly degenerate spectra associated with universal extra dimensions (UED)
provide an interesting phenomenology not only from the point of view of
cosmology and astrophysics, but also for colliders. We study these exotic
signals for the simplest case, called minimal UED, where it is natural to find
slow charged particles, displaced vertices, tracks with non-vanishing impact
parameters, track kinks, and even vanishing charged tracks.Comment: 6 pages, 3 figures. Contributed to XXIII International Symposium on
Lepton and Photon Interactions at High Energy, Aug 13-18, 2007, Daegu, Kore
- …