4,913 research outputs found

    Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    Get PDF
    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~5.8‰ vs. expected values of ~6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites. © 2011 Elsevier B.V

    Polarizing Tweets on Climate Change

    Full text link
    We introduce a framework to analyze the conversation between two competing groups of Twitter users, one who believe in the anthropogenic causes of climate change (Believers) and a second who are skeptical (Disbelievers). As a case study, we use Climate Change related tweets during the United Nation's (UN) Climate Change Conference - COP24 (2018), Katowice, Poland. We find that both Disbelievers and Believers talk within their group more than with the other group; this is more so the case for Disbelievers than for Believers. The Disbeliever messages focused more on attacking those personalities that believe in the anthropogenic causes of climate change. On the other hand, Believer messages focused on calls to combat climate change. We find that in both Disbelievers and Believers bot-like accounts were equally active and that unlike Believers, Disbelievers get their news from a concentrated number of news sources

    Urban Heat Island and Vulnerable Population. The Case of Madrid

    Get PDF
    The Urban Heat Island effect shows the differences among temperatures in urban areas and the surrounding rural ones. Previous studies have demonstrated that temperature differences could be up to 8 °C during the hottest periods of summer in Madrid , and that it varies according to the urban structure. Associated to this effect, the impact of temperature increase over dwelling indoor thermal comfort seems to double cooling energy demand . In Madrid, fuel poor households already suffering from inadequate indoor temperatures can face important overheating problems and, as a consequence, relevant health problems could become more frequent and stronger. This poses an increment in mortality rates in risk groups that should be evaluated. This research is aimed at establishing the geospatial connection between the urban heat island and the most vulnerable population living in the city of Madrid. Hence, those areas most in need for an urban intervention can be detected and prioritized

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Intermediate Outcomes, Strategies, and Challenges of Eight Healthy Start Projects

    Get PDF
    Site visits were conducted for the evaluation of the national Healthy Start program to gain an understanding of how projects design and implement five service components (outreach, case management, health education, depression screening and interconceptional care) and four system components (consortium, coordination/collaboration, local health system action plan and sustainability) as well as program staff’s perceptions of these components’ influence on intermediate outcomes. Interviews with project directors, case managers, local evaluators, clinicians, consortium members, outreach/lay workers and other stakeholders were conducted during 3-day in-depth site visits with eight Healthy Start grantees. Grantees reported that both services and systems components were related to self-reported service achievements (e.g. earlier entry into prenatal care) and systems achievements (e.g. consumer involvement). Outreach, case management, and health education were perceived as the service components that contributed most to their achievements while consortia was perceived as the most influential systems component in reaching their goals. Furthermore, cultural competence and community voice were overarching project components that addressed racial/ethnic disparities. Finally, there was great variability across sites regarding the challenges they faced, with poor service availability and limited funding the two most frequently reported. Service provision and systems development are both critical for successful Healthy Start projects to achieve intermediate program outcomes. Unique contextual and community issues influence Healthy Start project design, implementation and reported accomplishments. All eight projects implement the required program components yet outreach, case management, and health education are cited most frequently for contributing to their perceived achievements

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials

    Shaping bursting by electrical coupling and noise

    Full text link
    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic \beta-cells, which in isolation are known to exhibit irregular spiking. At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity or small total effective resistance are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models
    corecore