1,953 research outputs found

    Le LEP: des acquis historiques !

    Get PDF

    New particle searches

    Get PDF
    This review presents recent results on new particle searches achieved at Tevatron, Hera and LEP. After a brief outline of the searches on exotic particles, results on supersymmetric particles and Higgs bosons are detailed. Near future prospects are also given.Comment: 25 pages, 11 postscript figures, typo corrections. To appear in Proceedings of XIX Lepton-Photon Symposium, Stanford, August 199

    Constraining the Λ\LambdaCDM and Galileon models with recent cosmological data

    Get PDF
    The Galileon theory belongs to the class of modified gravity models that can explain the late-time accelerated expansion of the Universe. In previous works, cosmological constraints on the Galileon model were derived, both in the uncoupled case and with a disformal coupling of the Galileon field to matter. There, we showed that these models agree with the most recent cosmological data. In this work, we used updated cosmological data sets to derive new constraints on Galileon models, including the case of a constant conformal Galileon coupling to matter. We also explored the tracker solution of the uncoupled Galileon model. After updating our data sets, especially with the latest \textit{Planck} data and BAO measurements, we fitted the cosmological parameters of the Λ\LambdaCDM and Galileon models. The same analysis framework as in our previous papers was used to derive cosmological constraints, using precise measurements of cosmological distances and of the cosmic structure growth rate. We showed that all tested Galileon models are as compatible with cosmological data as the Λ\LambdaCDM model. This means that present cosmological data are not accurate enough to distinguish clearly between both theories. Among the different Galileon models, we found that a conformal coupling is not favoured, contrary to the disformal coupling which is preferred at the 2.3σ2.3\sigma level over the uncoupled case. The tracker solution of the uncoupled Galileon model is also highly disfavoured due to large tensions with supernovae and \textit{Planck}+BAO data. However, outside of the tracker solution, the general uncoupled Galileon model, as well as the general disformally coupled Galileon model, remain the most promising Galileon scenarios to confront with future cosmological data. Finally, we also discuss constraints coming from Lunar Laser Ranging experiment and gravitational wave speed of propagation.Comment: 22 pages, 17 figures, published version in A&

    Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes

    Get PDF
    The Galileon model is a modified gravity theory that may provide an explanation for the accelerated expansion of the Universe. This model does not suffer from instabilities or ghost problems (normally associated with higher-order derivative theories), restores local General Relativity -- thanks to the Vainshtein screening effect -- and predicts late time acceleration of the expansion. In this paper, we derive a new definition of the Galileon parameters that allows us to avoid having to choose initial conditions for the Galileon field, and then test this model against precise measurements of the cosmological distances and the rate of growth of cosmic structures. We observe a small tension between the constraints set by growth data and those from distances. However, we find that the Galileon model remains consistent with current observations and is still competitive with the \Lambda CDM model, contrary to what was concluded in recent publications.Comment: 19 pages, 15 figures, accepted to Astronomy and Astrophysic

    First experimental constraints on the disformally coupled Galileon model

    Get PDF
    The Galileon model is a modified gravity model that can explain the late-time accelerated expansion of the Universe. In a previous work, we derived experimental constraints on the Galileon model with no explicit coupling to matter and showed that this model agrees with the most recent cosmological data. In the context of braneworld constructions or massive gravity, the Galileon model exhibits a disformal coupling to matter, which we study in this paper. After comparing our constraints on the uncoupled model with recent studies, we extend the analysis framework to the disformally coupled Galileon model and derive the first experimental constraints on that coupling, using precise measurements of cosmological distances and the growth rate of cosmic structures. In the uncoupled case, with updated data, we still observe a low tension between the constraints set by growth data and those from distances. In the disformally coupled Galileon model, we obtain better agreement with data and favour a non-zero disformal coupling to matter at the 2.5σ2.5\sigma level. This gives an interesting hint of the possible braneworld origin of Galileon theory.Comment: 9 pages, 6 figures, updated versio

    Effects of photon reabsorption phenomena in confocal micro-photoluminescence measurements in crystalline silicon

    Get PDF
    Confocal micro-photoluminescence (PL) spectroscopy has become a powerful characterization technique for studying novel photovoltaic (PV) materials and structures at the micrometer level. In this work, we present a comprehensive study about the effects and implications of photon reabsorption phenomena on confocal micro-PL measurements in crystalline silicon (c-Si), the workhorse material of the PV industry. First, supported by theoretical calculations, we show that the level of reabsorption is intrinsically linked to the selected experimental parameters, i.e., focusing lens, pinhole aperture, and excitation wavelength, as they define the spatial extension of the confocal detection volume, and therefore, the effective photon traveling distance before collection. Second, we also show that certain sample properties such as the reflectance and/or the surface recombination velocity can also have a relevant impact on reabsorption. Due to the direct relationship between the reabsorption level and the spectral line shape of the resulting PL emission signal, reabsorption phenomena play a paramount role in certain types of micro-PL measurements. This is demonstrated by means of two practical and current examples studied using confocal PL, namely, the estimation of doping densities in c-Si and the study of back-surface and/or back-contacted Si devices such as interdigitated back contact solar cells, where reabsorption processes should be taken into account for the proper interpretation and quantification of the obtained PL data.Peer ReviewedPostprint (published version

    Growth Route Toward III-V Multispectral Solar Cells on Silicon

    Full text link
    To date, high efficiency multijunction solar cells have been developed on Ge or GaAs substrates for space applications, and terrestrial applications are hampered by high fabrication costs. In order to reduce this cost, we propose a breakthrough technique of III-V compound heteroepitaxy on Si substrates without generation of defects critical to PV applications. With this technique we expect to achieve perfect integration of heterogeneous Ga1-xInxAs micro-crystals on Si substrates. In this paper, we show that this is the case for x=0. GaAs crystals were grown by Epitaxial Lateral Overgrowth on Si (100) wafers covered with a thin SiO2 nanostructured layer. The cristallographic structure of these crystals is analysed by MEB and TEM imaging. Micro-Raman and Micro-Photomuminescence spectra of GaAs crystals grown with different conditions are compared with those of a reference GaAs wafer in order to have more insight on eventual local strains and their cristallinity. This work aims at developping building blocks to further develop a GaAs/Si tandem demonstrator with a potential conversion efficiency of 29.6% under AM1.5G spectrum without concentration, as inferred from our realistic modeling. This paper shows that Epitaxial Lateral Overgrowth has a very interesting potential to develop multijunction solar cells on silicon approaching the today 30.3% world record of a GaInP/GaAs tandem cell under the same illumination conditions, but on a costlier substrate than silicon.Comment: Preprint of the 28th EUPVSEC proceedings, September 2013, Paris, France. (5 pages
    corecore