60 research outputs found

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    On the thermodynamic origin of metabolic scaling

    Get PDF
    This work has been funded by projects AYA2013-48623-C2-2, FIS2013-41057-P, CGL2013-46862-C2-1-P and SAF2015-65878-R from the Spanish Ministerio de Economa y Competitividad and PrometeoII/2014/086, PrometeoII/2014/060 and PrometeoII/2014/065 from the Generalitat Valenciana (Spain). BL acknowledges funding from a Salvador de Madariaga fellowship, and L.L. acknowledges funding from EPSRC Early Career fellowship EP/P01660X/1

    Bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation

    Get PDF
    This paper presents an improved bivariate mixed distribution, which is capable of modeling the dependence of daily rainfall from two distinct sources (e.g., rainfall from two stations, two consecutive days, or two instruments such as satellite and rain gauge). The distribution couples an existing framework for building a bivariate mixed distribution, the theory of copulae and a hybrid marginal distribution. Contributions of the improved distribution are twofold. One is the appropriate selection of the bivariate dependence structure from a wider admissible choice (10 candidate copula families). The other is the introduction of a marginal distribution capable of better representing low to moderate values as well as extremes of daily rainfall. Among several applications of the improved distribution, particularly presented here is its utility for single-site daily rainfall simulation. Rather than simulating rainfall occurrences and amounts separately, the developed generator unifies the two processes by generalizing daily rainfall as a Markov process with autocorrelation described by the improved bivariate mixed distribution. The generator is first tested on a sample station in Texas. Results reveal that the simulated and observed sequences are in good agreement with respect to essential characteristics. Then, extensive simulation experiments are carried out to compare the developed generator with three other alternative models: the conventional two-state Markov chain generator, the transition probability matrix model, and the semiparametric Markov chain model with kernel density estimation for rainfall amounts. Analyses establish that overall the developed generator is capable of reproducing characteristics of historical extreme rainfall events and is apt at extrapolating rare values beyond the upper range of available observed data. Moreover, it automatically captures the persistence of rainfall amounts on consecutive wet days in a relatively natural and easy way. Another interesting observation is that the recognized “overdispersion” problem in daily rainfall simulation ascribes more to the loss of rainfall extremes than the under-representation of first-order persistence. The developed generator appears to be a sound option for daily rainfall simulation, especially in particular hydrologic planning situations when rare rainfall events are of great importance

    Ontogenetic phase shifts in metabolism in a flounder Paralichthys olivaceus

    Get PDF
    Size-scaling metabolism is widely considered to be of significant importance in biology and ecology. Thus, allometric relationships between metabolic rate (VO2) and body mass (M), V O25aiMb, have long been a topic of interest and speculation. It has been proposed that intraspecifically metabolic rate scales isometrically or near isometrically with body mass during the early life history in fishes, invertebrates, birds and mammals. We developed a new perspective on intraspecific size-scaling metabolism through determination of metabolic rate in the Japanese flounder, Paralichthys olivaceus, during their early life stages spanning approximately four orders of magnitude in body mass. With the increase of body mass, the Japanese flounder had four distinct negative allometric phases in which three stepwise increases in scaling constants (ai, i51?4), i.e. ontogenetic phase shifts in metabolism, occurred with growth during its early life stages at around 0.002, 0.01 and 0.2 g, maintaining each scaling exponent constant in each phase (b50.831).These shifts in metabolism during the early life stages are similar to the tiger puffer, Takifugu rubripes. Our results indicate that ontogenetic phase shifts in metabolism are key to understanding intraspecific size-scaling metabolism in fishes

    Periglacial landscape evolution and environmental changes of Arctic lowland areas for the last 60,000 years (Western Laptev Sea coast, Cape Mamontov Klyk)

    Get PDF
    Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat–sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerþd warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene

    On being the right size: heart design, mitochondrial efficiency and lifespan potential

    No full text
    1. From the smallest shrew or bumble-bee bat to the largest blue whale, heart size varies by over seven orders of magnitude (from 12 mg to 600 kg). This study reviews the scaling relationships between heart design, cellular bioenergetics and mitochondrial efficiencies in mammals of different body sizes.\ud \ud 2. The [31P]-nuclear magnetic resonance-derived [phosphocreatine]/[ATP] ratio in hearts of smaller mammals is significantly higher (2.7 ± 0.3 for mouse; n = 22) than in larger mammals (1.6 ± 0.3 for humans; n = 13).\ud \ud 3. The inverse of the free myocardial cytosolic [ADP] concentration and the cytosolic phosphorylation ratio ([ATP]/[ADP][Pi]) scales with heart size and with absolute mitochondrial and myofibrillar volumes, close to a quarter-power (from −0.22 to −0.28; r = 0.99).\ud \ud 4. Assuming a similar mitochondrial P/O ratio and the same maximal amount of work required to convert 1 mol NADH to 0.5 mol O2 (i.e. 212.25 kJ/mol), the higher [ATP]/[ADP][Pi] ratios or cellular driving forces (ΔG'ATP) in hearts of smaller mammals imply greater mitochondrial efficiencies in coupling ATP production to electron transport as body size decreases. For a P/O ratio of 2.5, the mitochondrial efficiency in the heart of a shrew, mouse, human and whale is 84, 82, 71 and 65%, respectively.\ud \ud 5. Higher cytosolic ATP]/[ADP][Pi] ratios and ΔG'ATP values imply that the hearts of smaller mammals operate further from equilibrium than hearts of larger mammals.\ud \ud 6. As a consequence of scaling relationships, a number of remarkable invariants emerge when comparing heart function from the smallest shrew to the largest whale; the total volume of blood pumped by each heart in a lifetime is approximately 200 million L/kg heart and the total number of heart beats is approximately 1.1 billion per lifetime.\ud \ud 7. Similarly, the metabolic potential (total O2 consumed during adult lifespan per g bodyweight) for a 2 g shrew or a 100 000 kg blue whale is approximately 38 L O2 consumed or 8.5 mol ATP/g body mass per lifetime.\ud \ud 8. The importance of quarter-power scaling relationships linking structural, metabolic and bioenergetic design to the natural ageing process and maximum lifespan potential is discussed

    Modelling energy utilization for laying type Pullets

    No full text
    Three trials were carried out to determine energy metabolized (EM) requirement model for starting and growing pullets from different strains, at five ambient temperatures and different percentage feather coverage. In Trial I, metabolizable energy requirements for maintenance (MEm) and efficiency of energy utilization were estimated using 64 birds of two different strains, Hy-Line W36 (HLW36) and Hy-Line Semi-heavy (HLSH), from 9 to 13 weeks of age. The effects of ambient temperature (12, 18, 24, 30 and 36ÂșC) and percentage feather coverage (0, 50 and 100%) on MEm were assessed in the second trial, using 48 birds per temperature per strain (HLSH and HLW36) from 9 to 13 weeks of age. Trial III evaluated ME requirements for weight gain (MEg) using 1,200 birds from two light strains (HLW36 and Hisex Light, HL) and two semi-heavy strains (HLSH and Hisex Semi-heavy, HSH) reared until 18 weeks of age. According to the prediction models, MEm changed as a function of temperature and feather coverage, whereas MEg changed as a function of age and bird strain. Thus, two models were developed for birds aged 1 to 6 weeks, one model for the light strain and one for the semi-heavy strain. Energy requirements (ER) were different among strains from 7 to 12 weeks, and therefore 4 models were elaborated. From 13 to 18 weeks, one single model was produced for semi-heavy birds, since ER between semi-heavy strains were not different, whereas two different models were elaborated for the light layers. MEg of light birds was higher than MEg of semi-heavy birds, independent of age
    • 

    corecore