78 research outputs found

    Inhaled nitric oxide for high-altitude pulmonary edema

    Get PDF
    BACKGROUND. Pulmonary hypertension is a hallmark of high-altitude pulmonary edema and may contribute to its pathogenesis. When administered by inhalation, nitric oxide, an endothelium-derived relaxing factor, attenuates the pulmonary vasoconstriction produced by short-term hypoxia. METHODS. We studied the effects of inhaled nitric oxide on pulmonary-artery pressure and arterial oxygenation in 18 mountaineers prone to high-altitude pulmonary edema and 18 mountaineers resistant to this condition in a high altitude laboratory (altitude, 4559 m). We also obtained lung-perfusion scans before and during nitric oxide inhalation to gain further insight into the mechanism of action of nitric oxide. RESULTS. In the high-altitude laboratory, subjects prone to high-altitude pulmonary edema had more pronounced pulmonary hypertension and hypoxemia than subjects resistant to high-altitude pulmonary edema. Arterial oxygen saturation was inversely related to the severity of pulmonary hypertension (r=-0.50, P=0.002). In subjects prone to high-altitude pulmonary edema, the inhalation of nitric oxide (40 ppm for 15 minutes) produced a decrease in mean (+/-SD) systolic pulmonary-artery pressure that was three times larger than the decrease in subjects resistant to such edema (25.9+/-8.9 vs. 8.7+/-4.8 mm Hg, P<0.001). Inhaled nitric oxide improved arterial oxygenation in the 10 subjects who had radiographic evidence of pulmonary edema (arterial oxygen saturation increased from 67+/-10 to 73+/-12 percent, P=0.047), whereas it worsened oxygenation in subjects resistant to high-altitude pulmonary edema. The nitric oxide-induced improvement in arterial oxygenation in subjects with high-altitude pulmonary edema was accompanied by a shift in blood flow in the lung away from edematous segments and toward nonedematous segments. CONCLUSIONS. The inhalation of nitric oxide improves arterial oxygenation in high-altitude pulmonary edema, and this beneficial effect may be related to its favorable action on the distribution of blood flow in the lungs. A defect in nitric nitric oxide synthesis may contribute to high-altitude pulmonary edema

    An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis

    Get PDF
    BACKGROUND: The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. PRINCIPAL FINDINGS: We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. CONCLUSIONS: Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins

    European guideline on IgG4-related digestive disease – UEG and SGF evidence-based recommendations

    Get PDF
    The overall objective of these guidelines is to provide evidence-based recommendations for the diagnosis and management of immunoglobulin G4 (IgG4)-related digestive disease in adults and children. IgG4-related digestive disease can be diagnosed only with a comprehensive work-up that includes histology, organ morphology at imaging, serology, search for other organ involvement, and response to glucocorticoid treatment. Indications for treatment are symptomatic patients with obstructive jaundice, abdominal pain, posterior pancreatic pain, and involvement of extra-pancreatic digestive organs, including IgG4-related cholangitis. Treatment with glucocorticoids should be weight-based and initiated at a dose of 0.6–0.8 mg/kg body weight/day orally (typical starting dose 30-40 mg/day prednisone equivalent) for 1 month to induce remission and then be tapered within two additional months. Response to initial treatment should be assessed at week 2–4 with clinical, biochemical and morphological markers. Maintenance treatment with glucocorticoids should be considered in multi-organ disease or history of relapse. If there is no change in disease activity and burden within 3 months, the diagnosis should be reconsidered. If the disease relapsed during the 3 months of treatment, immunosuppressive drugs should be added

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Hospital mortality and length of ICU stay in severely burned patients

    No full text

    Patterns of alcohol consumption and acute myocardial infarction: a case-crossover analysis

    Get PDF
    Background: Alcohol consumption has been causally related to the incidence of coronary heart disease, but the role of alcohol before the event has not been explored in depth. This study tested the hypothesis that heavy drinking (binge drinking) increases the risk of subsequent acute myocardial infarctions (AMI), whereas light to moderate drinking occasions decrease the risk. Methods: Case-crossover design of 250 incident AMI cases in Switzerland, with main hypotheses tested by conditional logistic regression. Results: Alcohol consumption 12 h before the event significantly increased the risk of AMI (OR 3.1; 95% CI 1.4-6.9). Separately, the effects of moderate and binge drinking before the event on AMI were of similar size but did not reach significance. In addition, AMI patients showed more binge drinking than comparable control subjects from the Swiss general population. Conclusions: We found no evidence that alcohol consumption before the event had protective effects on AMI. Instead, alcohol consumption increased the risk

    Acute respiratory distress syndrome during the COVID-19 pandemic: not only SARS-CoV-2

    No full text
    A previously healthy 30-year-old woman developed severe ARDS at the beginning of the COVID-19 pandemic. SARS-CoV-2 infection was suspected, but testing was negative. Mycoplasma pneumoniae was detected by PCR in bronchoalveolar lavage fluid and blood. This case illustrates that M. pneumoniae infection can progress to septicemia and ARDS with severe respiratory failure in young healthy adults. Keywords: Acute respiratory distress syndrome; Mycoplasma pneumoniae; extracorporeal membrane oxygenation; pneumonia; sepsis

    Generating iPSCs with a High-Efficient, Non-Invasive Method—An Improved Way to Cultivate Keratinocytes from Plucked Hair for Reprogramming

    No full text
    Various somatic cell types are suitable for induced pluripotency reprogramming, such as dermal fibroblasts, mesenchymal stem cells or hair keratinocytes. Harvesting primary epithelial keratinocytes from plucked human hair follicles (HFs) represents an easy and non-invasive alternative to a fibroblast culture from invasive skin biopsies. Nevertheless, to facilitate and simplify the process, which can be divided into three main steps (collecting, culturing and reprogramming), the whole procedure of generating hair keratinocytes has to be revised and upgraded continuously. In this study, we address advancements and approaches which improve the generation and handling of primary HF-derived keratinocytes tremendously, e.g., for iPSCs reprogramming. We not only evaluated different serum- and animal-origin-free media, but also supplements and coating solutions for an enhanced protocol. Here, we demonstrate the importance of speed and accuracy in the collecting step, as well as the choice of the right transportation medium. Our results lead to a more defined approach that further increases the reliability of downstream experiments and inter-laboratory reproducibility. These improvements will make it possible to obtain keratinocytes from plucked human hair for the generation of donor-specific iPSCs easier and more efficient than ever before, whilst preserving a non-invasive capability
    corecore