613 research outputs found

    Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    Get PDF
    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol

    Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing

    Get PDF
    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model, resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low-volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which ageing reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least 3 times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these hybrid multi-generational schemes should be used with great caution in regional models

    Modeling the Atmospheric Concentrations of Individual Gas-Phase and Particle-Phase Organic Compounds

    Get PDF
    An Eulerian photochemical airshed model is adapted to track the concentrations of individual vapor-phase, semivolatile, and particle-phase compounds over the carbon number range from C_1 to C_(34). The model incorporates primary emissions of organic gases and particles from sources based on recent source tests. These emissions are processed through a photochemical airshed model whose chemical mechanism has been expanded to explicitly follow the reaction or formation of 125 individual vapor-phase organic compounds plus 11 lumped vapor-phase compound groups. Primary organic compounds in the particle phase can be disaggregated at will from a lumped primary organic compound mass category; in the present model application, 31 individual primary particulate organic compounds are tracked as they are transported from sources to receptor air monitoring sites. The model is applied to study air quality relationships for organics in California's South Coast Air Basin that surrounds Los Angeles during the severe photochemical smog episode that occurred on September 8−9, 1993. The ambient concentra tions of all normal alkanes and most aromatic hydrocarbons are predicted within the correct order of magnitude over 6 orders of magnitude concentration change from most abundant gas phase to least abundant particulate species studied. A formal evaluation of model performance shows that, with the exception of a few outliers, the concentrations of over 100 organic compounds studied were reproduced with an average absolute bias of ±47% and with roughly equal numbers of compounds underpredicted (58) versus overpredicted (46). The time series of observed aromatic hydrocarbons concentrations are reproduced closely, production of methylglyoxal from aromatic precursors is tracked, and the predicted olefinic hydrocarbon concentrations decline dramatically in concentration due to chemical reaction and dilution during downwind transport as is observed in the ambient monitoring database. This ability to simultaneously account for the concentrations of individual gas-phase and particulate organic compounds lays a foundation for future calculations of secondary organic aerosol formation and gas/particle repartitioning in the atmosphere

    Performance of the Xpert HPV assay in women attending for cervical screening

    Get PDF
    © 2015 The Authors. Objectives: This study evaluated the Xpert HPV Assay in women attending screening in general practice by comparing Xpert with two established HPV tests, cytology and histology. Methods: A prospective study in women aged 20-60 years attending screening in Bristol, Edinburgh and London using residual Preservcyt cytology samples. Sample order was randomised between Roche cobas4800 and Cepheid Xpert assays with Qiagen hc2 third. Results: 3408 cases were included in the primary analysis. Positivity for Xpert was 19.6%, cobas 19.2% and hc2 19.9% with high concordance (kappa=86.8% vs cobas, 81.55 vs hc2). Xpert, cobas and hc2 showed similar sensitivity (98.7%, 97.5%, 98.7%) for CIN2+. All pairwise comparisons had high concordance (Kappa ≥0.78 with any abnormal cytology. Xpert and hc2 were positive for all cases of ≥moderate dyskaryosis ( N=63)), cobas was negative in two. Histology was available for 172 participants. 79 reported CIN2+, 47 CIN3+. All CIN3+ was positive on Xpert and hc2 and one case negative for cobas. One case of CIN2 was negative for all assays. Conclusions: The performance of Xpert HPV Assay in a general screening population is comparable to established HPV tests. It offers simplicity of testing, flexibility with non-batching of individual samples and rapid turnaround time

    Early Neutrophilia Marked by Aerobic Glycolysis Sustains Host Metabolism and Delays Cancer Cachexia

    Get PDF
    An elevated neutrophil–lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy

    A coupled method for initializing El Niño Southern Oscillation forecasts using sea surface temperature

    Get PDF
    A simple method for initializing coupled general circulation models (CGCMs) using only sea surface temperature (SST) data is comprehensively tested in an extended set of ensemble hindcasts with the Max-Planck-Institute (MPI) climate model, MPI-OM/ECHAM5. In the scheme, initial conditions for both atmosphere and ocean are generated by running the coupled model with SST nudged strongly to observations. Air–sea interaction provides the mechanism through which SST influences the subsurface. Comparison with observations indicates that the scheme is performing well in the tropical Pacific. Results from a 500-yr control run show that the model's El Niño Southern Oscillation (ENSO) variability is quite realistic, in terms of strength, structure and period. The hindcasts performed were six months long, initiated four times per year, consisted of nine ensemble members, and covered the period 1969–2001. The ensemble was generated by only varying atmospheric initial conditions, which were sampled from the initialization run to capture intraseasonal variability. At six-month lead, the model is able to capture all the major ENSO extremes of the period. However, because of poor sampling of ocean initial conditions and model deficiencies, the ensemble-mean anomaly correlation skill for Niño3 SST is only 0.6 at six-month lead. None the less, the results presented here demonstrate the potential of such a simple scheme, and provide a simple method by which SST information may be better used in more complex initialization schemes

    Local Magnetic Properties of Antiferromagnetic FeBr2

    Get PDF
    The antiferromagnet FeBr2 has been studied by Mössbauer spectroscopy in external fields both in the metamagnetic region below the multicritical temperature TMCP and in the second-order transition region above. The local magnetization shows that the metamagnetic transition occurs by spin flips, as in simple models. However, in the second-order transition region, the local magnetization of the sublattice oriented antiparallel to the external field varies continuously but remains parallel to the c axis. This can only be understood if the external magnetic field induces strong transversal spin precession of the moments on the antiparallel sublattice. This shows that the anomalous maxima in the imaginary part χ\u27\u27 recently found in the ac susceptibility [M.M. Pereira de Azevedo et al., J. Magn. Magn. Mater. 140-144, 1557 (1995)] and denoted H_ below the critical field HC(T), and H+ above, can be understood as being caused by noncritical transversal spin fluctuations

    Towards an integrated crowdsourcing definition

    Full text link
    Crowdsourcing is a relatively recent concept that encompasses many practices. This diversity leads to the blurring of the limits of crowdsourcing that may be identified virtually with any type of internet-based collaborative activity, such as co-creation or user innovation. Varying definitions of crowdsourcing exist, and therefore some authors present certain specific examples of crowdsourcing as paradigmatic, while others present the same examples as the opposite. In this article, existing definitions of crowdsourcing are analysed to extract common elements and to establish the basic characteristics of any crowdsourcing initiative. Based on these existing definitions, an exhaustive and consistent definition for crowdsourcing is presented and contrasted in 11 cases.Estelles Arolas, E.; González-Ladrón-De-Guevara, F. (2012). Towards an integrated crowdsourcing definition. Journal of Information Science. 32(2):189-200. doi:10.1177/0165551512437638S189200322Vukovic, M., & Bartolini, C. (2010). Towards a Research Agenda for Enterprise Crowdsourcing. Leveraging Applications of Formal Methods, Verification, and Validation, 425-434. doi:10.1007/978-3-642-16558-0_36Brabham, D. C. (2008). Crowdsourcing as a Model for Problem Solving. Convergence: The International Journal of Research into New Media Technologies, 14(1), 75-90. doi:10.1177/1354856507084420Vukovic, M. (2009). Crowdsourcing for Enterprises. 2009 Congress on Services - I. doi:10.1109/services-i.2009.56Doan, A., Ramakrishnan, R., & Halevy, A. Y. (2011). Crowdsourcing systems on the World-Wide Web. Communications of the ACM, 54(4), 86. doi:10.1145/1924421.1924442Brabham, D. C. (2008). Moving the crowd at iStockphoto: The composition of the crowd and motivations for participation in a crowdsourcing application. First Monday, 13(6). doi:10.5210/fm.v13i6.2159Huberman, B. A., Romero, D. M., & Wu, F. (2009). Crowdsourcing, attention and productivity. Journal of Information Science, 35(6), 758-765. doi:10.1177/0165551509346786Andriole, S. J. (2010). Business impact of Web 2.0 technologies. Communications of the ACM, 53(12), 67. doi:10.1145/1859204.1859225Denyer, D., Tranfield, D., & van Aken, J. E. (2008). Developing Design Propositions through Research Synthesis. Organization Studies, 29(3), 393-413. doi:10.1177/0170840607088020Egger, M., Smith, G. D., & Altman, D. G. (Eds.). (2001). Systematic Reviews in Health Care. doi:10.1002/9780470693926Tatarkiewicz, W. (1980). A History of Six Ideas. doi:10.1007/978-94-009-8805-7Cosma, G., & Joy, M. (2008). Towards a Definition of Source-Code Plagiarism. IEEE Transactions on Education, 51(2), 195-200. doi:10.1109/te.2007.906776Brabham, D. C. (2009). Crowdsourcing the Public Participation Process for Planning Projects. Planning Theory, 8(3), 242-262. doi:10.1177/1473095209104824Alonso, O., & Lease, M. (2011). Crowdsourcing 101. Proceedings of the fourth ACM international conference on Web search and data mining - WSDM ’11. doi:10.1145/1935826.1935831Bederson, B. B., & Quinn, A. J. (2011). Web workers unite! addressing challenges of online laborers. Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA ’11. doi:10.1145/1979742.1979606Grier, D. A. (2011). Not for All Markets. Computer, 44(5), 6-8. doi:10.1109/mc.2011.155Heer, J., & Bostock, M. (2010). Crowdsourcing graphical perception. Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10. doi:10.1145/1753326.1753357Heymann, P., & Garcia-Molina, H. (2011). Turkalytics. Proceedings of the 20th international conference on World wide web - WWW ’11. doi:10.1145/1963405.1963473Kazai, G. (2011). In Search of Quality in Crowdsourcing for Search Engine Evaluation. Advances in Information Retrieval, 165-176. doi:10.1007/978-3-642-20161-5_17La Vecchia, G., & Cisternino, A. (2010). Collaborative Workforce, Business Process Crowdsourcing as an Alternative of BPO. Lecture Notes in Computer Science, 425-430. doi:10.1007/978-3-642-16985-4_40Liu, E., & Porter, T. (2010). Culture and KM in China. VINE, 40(3/4), 326-333. doi:10.1108/03055721011071449Oliveira, F., Ramos, I., & Santos, L. (2010). Definition of a Crowdsourcing Innovation Service for the European SMEs. Lecture Notes in Computer Science, 412-416. doi:10.1007/978-3-642-16985-4_37Porta, M., House, B., Buckley, L., & Blitz, A. (2008). Value 2.0: eight new rules for creating and capturing value from innovative technologies. Strategy & Leadership, 36(4), 10-18. doi:10.1108/10878570810888713Ribiere, V. M., & Tuggle, F. D. (Doug). (2010). Fostering innovation with KM 2.0. VINE, 40(1), 90-101. doi:10.1108/03055721011024955Sloane, P. (2011). The brave new world of open innovation. Strategic Direction, 27(5), 3-4. doi:10.1108/02580541111125725Wexler, M. N. (2011). Reconfiguring the sociology of the crowd: exploring crowdsourcing. International Journal of Sociology and Social Policy, 31(1/2), 6-20. doi:10.1108/01443331111104779Whitla, P. (2009). Crowdsourcing and Its Application in Marketing Activities. Contemporary Management Research, 5(1). doi:10.7903/cmr.1145Yang, J., Adamic, L. A., & Ackerman, M. S. (2008). Crowdsourcing and knowledge sharing. Proceedings of the 9th ACM conference on Electronic commerce - EC ’08. doi:10.1145/1386790.1386829Brabham, D. C. (2010). MOVING THE CROWD AT THREADLESS. Information, Communication & Society, 13(8), 1122-1145. doi:10.1080/13691181003624090Giudice, K. D. (2010). Crowdsourcing credibility: The impact of audience feedback on Web page credibility. Proceedings of the American Society for Information Science and Technology, 47(1), 1-9. doi:10.1002/meet.14504701099Stewart, O., Huerta, J. M., & Sader, M. (2009). Designing crowdsourcing community for the enterprise. Proceedings of the ACM SIGKDD Workshop on Human Computation - HCOMP ’09. doi:10.1145/1600150.1600168Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370-396. doi:10.1037/h0054346Veal, A. J. (Ed.). (2002). Leisure and tourism policy and planning. doi:10.1079/9780851995465.0000Dahlander, L., & Gann, D. M. (2010). How open is innovation? Research Policy, 39(6), 699-709. doi:10.1016/j.respol.2010.01.01

    Children and Virtual Reality: Emerging Possibilities and Challenges

    Get PDF
    Virtual Reality is fast becoming a reality, with estimates that over 200m headsets will have been sold by 2020, and the market value for VR hardware and software reaching well over $20bn by then. Key players in the market currently include PlayStation with PSVR, Facebook with Oculus Rift, Google Cardboard and Daydream, Mattel with Viewmaster, and many other brands investing in content production for various audiences. One of those audiences is young people and children. “Children and Virtual Reality” is a collaboration between Dubit, Turner, WEARVR and the COST (European Cooperation in Science and Technology) Action DigiLitEY. Dubit, Turner and WEARVR are companies that specialise in digital, TV and VR content, with an interest in developing best practices around VR and children. DigiLitEY is a five year (2013-2017) academic network that focuses on existing and emerging communicative technologies for young children. This includes wearable technologies, 3D printers, robots, augmented reality, toys and games and relevant aspects of the Internet of Things. This report brings together industry research into the effects of VR on 8 to 12 year olds, and ideas that arose from a COST funded Think Tank to explore what the research findings might mean for the use of VR by under 8s
    corecore